




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第 PAGE13 页 共 NUMPAGES13 页数字信号处理实验报告完整版实验 1利用 T DFT 分析p 信号频谱一、实验目的1.加深对 DFT 原理的理解。2.应用 DFT 分析p 信号的频谱。3.深刻理解利用 DFT 分析p 信号频谱的原理,分析p 实现过程中出现的现象及解决方法。二、实验设备与环境计算机、MATLAB 软件环境 三、实验基础理论T 1.DFT 与 与 T DTFT 的关系有限长序列 的离散时间傅里叶变换 在频率区间的 N 个等间隔分布的点 上的 N 个取样值可以由下式表示:212 /0( )| ( ) ( ) 0 1Nj knjNk NkX e x n e X k k
2、 N 由上式可知,序列 的 N 点 DFT ,实际上就是 序列的 DTFT 在 N 个等间隔频率点 上样本 。2.利用 T DFT 求 求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:( ) ( ) ( )Nj j n kn j nNn n kX e x n e X k W eN 由上式可以得到:IDFT DTFT 很敏锐地揭露出问题所在。南京邮电大学实 验 报 告实验名称_熟悉MATLAB环境 _ 快速傅里叶变换及其应用 _IIR数字滤波器的设计_ FIR数字滤波器的设计课程名称 数字信号处理A班级学号_09002111_ 姓 名 王都超 开课时间 2022/202
3、2学年, 第 二 学期实验一熟悉MATLAB环境一、实验目的(1)熟悉MATLAB的主要操作命令。 (2)学会简单的矩阵输入和数据读写。 (3)掌握简单的绘图命令。(4)用MATLAB编程并学会创建函数。 (5)观察离散系统的频率响应。 二、实验内容(1) 数组的加、减、乘、除和乘方运算。输入A=1 2 3 4,B=3,4,5,6,求C=A+B, D=A-B,E=A.*B,F=A./B,G=A.B 。并用stem语句画出A、B、C、D、E、F、G。 D =-2-2-2-2 E =24F =0.6667 G =2434096 (2) 用MATLAB实现下列序列: a) x(n)0.8n 0n15
4、n=0:1:15; x1=0.8.n; a=(0.2+3*i)*n; stem(x1) b) x(n)e(0.23j)n 0n15n=0:1:15; x2=exp(a); a=(0.2+3*i)*n; stem(x2)c) x(n)3cos(0.125n0.2)2sin(0.25n0.1)0n15(4) 绘出下列时间函数的图形,对x轴、y轴以及图形上方均须加上适当的标注: a) x(t)sin(2t) 0t10sb) x(t)cos(100t)sin(t) 0t4s t=0:0.01:4; x=cos(100*pi*t).*sin(pi*t); plot(t,x, r-); xlabel(t)
5、,ylabel(x(t),title(cos) (6) 给定一因果系统H(z)(1频响应和相频响应。2z1z2)/(10.67z10.9z2),求出并绘制H(z)的幅(7) 计算序列8 -2 -1 2 3和序列2 3 -1 -3的离散卷积,并作图表示卷积结果。(8) 求以下差分方程所描述系统的单位脉冲响应h(n), 0n50y(n)0.1y(n1)0.06y(n2)x(n)2x(n1)实验过程与结果(含实验程序、运行的数据结果和图形); clear all; N=50; a=1 -2; b=1 0.1 -0.06; x1=1 zeros(1,N-1); n=0:1:N-1; h=filter(
6、a,b,x1); stem(n,h) axis(-1 53 -2.5 1.2)实验二快速傅里叶变换及其应用一、实验目的(1) 在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉MATLAB中的有关函数。 (2) 应用FFT对典型信号进行频谱分析p 。(3) 了解应用FFT进行信号频谱分析p 过程中可能出现的问题,以便在实际中正确应用FFT。 (4) 应用FFT实现序列的线性卷积和相关。 二、实验内容实验中用到的信号序列 a) 高斯序列(np)qxa(n)e020n15 其他b) 衰减正弦序列eansin(2fn)xb(n)00n15其他c) 三角波序列 nxc(n)8n00n34n7 其
7、他d) 反三角波序列4nxd(n)n400n34n7 其他(1) 观察高斯序列的时域和幅频特性,固定信号xa(n)中参数p=8,改变q的值,使q分别等于2,4,8,观察它们的时域和幅频特性,了解当q取不同值时,对信号序列的时域幅频特性的影响;固定q=8,改变p,使p分别等于8,13,14,观察参数p变化对信号序列的时域及幅频特性的影响,观察p等于多少时,会发生明显的泄漏现象,混叠是否也随之出现?记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。 (3) 观察三角波和反三角波序列的时域和幅频特性,用N=8点FFT分析p 信号序列xc(n)和观察两者的序列形状和频谱曲线有什么异同?绘出两序
8、列及其幅频特性xd(n)的幅频特性,曲线。在xc(n)和xd(n)末尾补零,用N=32点FFT分析p 这两个信号的幅频特性,观察幅频特性发生了什么变化?两种情况的FFT频谱还有相同之处吗?这些变化说明了什么? (5) 用FFT分别实现xa(n)(p8,q2)和xb(n)(a0.1,f0.0625)的16点循环卷积和线性卷积。n=0:15; p=8; q=2;xa=exp(-(n-p).2/q); subplot(2,3,1); stem(n,xa,.); title(xa波形);Xa=fft(xa,16); subplot(2,3,4); stem(abs(Xa),.);title(Xa(k)
9、=FFTxa(n)的波形 ); A=1; f=0.0625; a=0.1;xb=exp(-a*n).*sin(2*pi*f*n); subplot(2,3,2); stem(n,xb,.); title(xb波形); Xb=fft(xb,16); subplot(2,3,5); stem(abs(Xb),.);title(Xb(k)=FFTxb(n)的波形 );实验过程与结果(含实验程序、运行的数据结果和图形); 实验三 IIR数字滤波器的设计一、实验目的(1) 掌握双线性变换法及脉冲响应不变法设计IIR数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通I
10、IR数字滤波器的计算机编程。(2) 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。 (3) 熟悉巴特沃思滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。 二、实验内容 (1)P162 例4.4 设采样周期T=250s(采样频率fs=4kHz),分别用脉冲响应不变法和双线性变换法设计一个三阶巴特沃思低通滤波器,其3dB边界频率为fc=1kHz。脉冲响应不变法: fc=1000; fs=4000; OmegaC=2*pi*fc; B,A=butter(3, OmegaC,s); num1,den1=impinvar(B,A,fs); h1,w=freq
11、z(num1,den1); f = w/pi*fs/2; plot(f,abs(h1); 双线性变换法: fc=1000; fs=4000;OmegaC=2*fs*tan(pi*fc/fs); B,A=butter(3, OmegaC,s); num2,den2=bilinear(B,A,fs); h2,w=freqz(num2,den2); f = w/pi*fs/2; plot(f,abs(h2); 同一图中画两条曲线: fc=1000; fs=4000; OmegaC=2*pi*fc; B,A=butter(3, OmegaC,s); num1,den1=impinvar(B,A,fs)
12、; h1,w=freqz(num1,den1); f = w/pi*fs/2; OmegaC=2*fs*tan(pi*fc/fs); B,A=butter(3, OmegaC,s); num2,den2=bilinear(B,A,fs); h2,w=freqz(num2,den2); f = w/pi*fs/2; plot(f,abs(h1),r-.); hold on; plot(f,abs(h2),g-);(选做) (2)fc=0.2kHz,=1dB,fr=0.3kHz,At=25dB,T=1ms;分别用脉冲响应不变法及双线性变换法设计一巴特沃思数字低通滤波器,观察所设计数字滤波器的幅频特
13、性曲线,记录带宽和衰减量,检查是否满足要求。比较这两种方法的优缺点。实验过程与结果(含实验程序、运行的数据结果和图形); 实验四FIR数字滤波器的设计一、实验目的(1) 掌握用窗函数法,频率采样法及优化设计法设计FIR滤波器的原理及方法,熟悉相应的计算机编程; (2) 熟悉线性相位FIR滤波器的幅频特性和相频特性;(3) 了解各种不同窗函数对滤波器性能的影响。 二、实验内容(1) 生成一个长度为20的矩形窗,画出其时域和幅频特性曲线。 n=0:1:19; N=20; win(1:20)=1; H,w=freqz(win,1); subplot(2,1,1); stem(n,win) subpl
14、ot(2,1,2); plot(w,abs(H); (2) 用矩形窗设计一个21阶的线性相位低通FIR数字滤波器,截止频率Wc0.25,求出滤波器系数,并绘出滤波器的幅频特性。修改程序,分别得到阶次为N41,61的滤波器,并显示其各自的幅频曲线。a) 在上面所得的几幅图中,在截止频率两边可以观察到幅频响应的摆动行为。 请问波纹的数量与滤波器脉冲响应的长度之间有什么关系? b) 最大波纹的高度与滤波器脉冲响应的长度之间有什么关系? 实验过程与结果(含实验程序、运行的数据结果和图形); 21阶的线性相位低通FIR数字滤波器: Wc=0.25*pi; N=21; M=(N-1)/2;%位移量for
15、n=0:(N-1)if (n= fix(M)%中间的点单独算hd(n+1)=Wc/pi;else hd(n+1)=sin(Wc*(n-M) /(pi*(n-M); end; end; win=boxcar(N); %不同窗函数h=hd.*win; H,w=freqz(h,1); n=0:1:N-1; subplot(3,1,1); stem(n,h) subplot(3,1,2); plot(w,abs(H); subplot(3,1,3); plot(w,angle(H);41阶的线性相位低通FIR数字滤波器: Wc=0.25*pi; N=41; M=(N-1)/2;%位移量for n=0:
16、(N-1)if (n= fix(M)%中间的点单独算hd(n+1)=Wc/pi;else hd(n+1)=sin(Wc*(n-M) /(pi*(n-M); end; end; win=boxcar(N); %不同窗函数h=hd.*win; H,w=freqz(h,1); n=0:1:N-1; subplot(3,1,1); stem(n,h) subplot(3,1,2); plot(w,abs(H); subplot(3,1,3); plot(w,angle(H);61阶的线性相位低通FIR数字滤波器: Wc=0.25*pi; N=61; M=(N-1)/2;%位移量for n=0:(N-1
17、)if (n= fix(M)%中间的点单独算hd(n+1)=Wc/pi;else hd(n+1)=sin(Wc*(n-M) /(pi*(n-M); end; end; win=boxcar(N); %不同窗函数h=hd.*win; H,w=freqz(h,1); n=0:1:N-1; subplot(3,1,1); stem(n,h) subplot(3,1,2); plot(w,abs(H); subplot(3,1,3); plot(w,angle(H);数字信号处理实验小结及心得体会:通过这次实验,我对MATLAB语言有了一定的认识,虽然还不能完全用MATLAB独立编写程序,但对这种语言环境有了新的了解。我知道了一般的加减乘除在MATLAB中不同的意义。知道输入、输出语句怎么形成。通过快速傅里叶变换及其应用的实验,加
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论