版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、欢迎下载 灰度-索引:利用gray2ind函数实现,B,map=gray2ind(A,n),按照指定的灰度级数n和颜色图map进行转换。二值-索引:转换的实现与灰度-索引的转换相同,使用同一个调用函数,在这里n表示的是指定颜色图map的颜色种类。索引-RGB:利用ind2rgb函数实现,B=ind2rgb(A,map),将矩阵A和对应的颜色图map转换成RGB图像。3.图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理。图像变换分为可分离变换和统计变换两大类,可分离变换包括
2、傅里叶变换、离散余弦变换、哈达玛变换、沃尔什变换和哈尔变换等等;统计变换主要是霍特林变换。下面主要介绍离散余弦变换和小波变换的基本原理。离散余弦变换离散余弦变换(DCT)是数码率压缩需要常用的一个变换编码方法。任何连续的实对称函数的傅里叶变换中只含余弦项,因此余弦变换与傅里叶变换一样有明确的物理意义。DCT是先将整体图像分成N*N像素块,然后对N*N像素块逐一进行DCT变换。由于大多数图像的高频分量较小,相应于图像高频分量的系数经常为零,加上人眼对高频成分的失真不太敏感,所以可用更粗的量化。因此,传送变换系数的数码率要大大小于传送图像像素所用的数码率。到达接收端后通过反离散余弦变换回到样值,虽
3、然会有一定的失真,但人眼是可以接受的。a.一维DCT的变换核定义为2(2x+1)u兀g(x,u)=C(u)、:Ncos2n式中,ux=0,1,2,,N1;C(u)=1-2C(u)=1-21其他一维DCT定义如下:设f(x)lx=0,1,,N-1为离散的信号歹列。F(u)=C(u)Rkf(x)cos(2x+1)u兀2N式中,u,x=0,1,2,,N1。将变换式展开整理后,可以写成矩阵的形式,即F=Gf一二J2/N一1cos仇/2N)1cos(3兀/2N)cos(2N11-1)兀/2N)-一G=业/Ncos仇/2N)cos(6兀/2N)cos(2N-1)兀/2N)b.离散小波变换(DWT)离散小波
4、变换针对尺度参数2,平移参数b进行离散化,最常用的是二进制动态采样网络,每个网格点对应的尺度为2上,平移为2jk,即:W(t)=2r72W(2-jt-k),j,keZj,k该离散化小波称为二进制小波,二进制小波对信号的分析具有变焦距的作用。图像预处理图像预处理的目的是去除干扰、噪声及差异,将原始图像变成适于计算机进行特征提取的形式,它包括图像的变换、增强和滤波等。图像压缩编码图像编码压缩技术可减少描述图像的数据量,以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,编码的目的是压缩图像的信息量(但图像质量
5、几乎不变),以满足传输和存储的要求。为此,可以采用模拟处理技术,再通过模-数转换得到编码,不过多数是采用数字编码技术,其编码可以对图像逐点进行加工,也可以对图像施加某种变换或基于区域、特征进行编码。首先,对经过高精度模-数变换的原始数字图像进行去相关处理,去除信息的冗余度;然后,根据一定的允许失真要求,对去相关后的信号编码即重新码化。一般用线性预测和正交变换进行去相关处理;与之相对应,图像编码方案也分成预测编码和变换域编码两大类。预测编码利用线性预测逐个对图像信息样本去相关。对某个像素S0来说,它用邻近一些像素亮度的加权和(线性组合)作为估值对S0进行预测。S0与它的差值e(u)就是预测误差。
6、由于相邻像素与S0间存在相关性,差值的统计平均能量就变得很小。因此,只需用少量数码就可以实现差值图像的传输。变换域编码用一维、二维或三维正交变换对一维n、二维nXn、三维nXnXn块中的图像样本的集合去相关,得到能量分布比较集中的变换域;在再码化时,根据变换域中变换系数能量大小分配数码,就能压缩频带。最常用的正交变换是离散余弦变换(DCT),n值一般选为8或16。三维正交变换同时去除了三维方向的相关性,它可以压缩到平均每样本1比特。彩色图像灰度处理由于彩色图像存储空间较大,因此,在对图像进行识别等处理过程中,需要将彩色图像转换为灰度图像,以加快后续工作的处理速度。将彩色图像转换为灰度图像的过程
7、叫做灰度化处理,在MATLAB中将彩色图像转换为灰色图像的实现语句为B=rgb2gray(A)。图像去噪数字图像在数字化和传输过程中常受到成像设备与外部环境噪声干扰等影响,减少数字图像中噪声的过程称为图像去噪。典型的图像去噪主要有以下几种方法:中值滤波、均值滤波、灰度形态学滤波、小波变换、高斯低通滤波和统计滤波等。下面主要对中值滤波、均值滤波、灰度形态学滤波的算法原理做以说明。中值滤波的主要原理是:首先确定一个以某个像素为中心点的窗口,然后将窗口中的各个像素的灰度值按照大小进行排序,取其中间值作为中心点像素灰度的新值。中值滤波对异常值(与周围像素灰度值差别较大的像素的值)的敏感性比均值滤波小,
8、它可以在不减小图像对比度的情况下剔除这些异常值,使图像产生较少的模糊。因为它能够有效地去除尖峰噪声,还能对边缘起到很好的保护作用。均值滤波是对图像进行局部运算,每个像素值用其局部领域内所有值的均值代替。均值滤波可以消除图像噪声等高频成分,但同时会导致图像细节损失,图像的模糊程度会更大,为了克服这个缺点,采用阀值法减少模糊效应。灰度形态学滤波是一种非线性滤波方法,它有四种基础操作:腐蚀、膨胀、开操作和闭操作。灰度形态膨胀和腐蚀是以结构元素为模板,分别搜寻图像在结构基元大小范围内的灰度和的极大值和灰度差的极小值,开运算是采用相同的结构元先做腐蚀再做膨胀的迭代运算,闭运算是采用相同的结构元先做膨胀再
9、做腐蚀的迭代运算,开闭运算的基本作用是对图像进行平滑处理。形态学滤波能够在一次性滤波的同时,保持图像结构不被钝化。图像增强图像增强主要是指利用各种数学方法和变换手段提高图像中人们感兴趣部分的清晰度,突出一幅图像中的某些信息,同时削弱另一些无用信息,包括图像灰度修正、噪声去除、图像平滑、腐蚀、锐化、图像边缘增强等。根据图像增强处理过程所在的空间不同,可分为基于空间域的增强方法和基于频率域的增强方法两类,前者直接在图像所在的二维空间进行处理,即直接对每一像素的灰度值进行处理;后者则是首先经过傅立叶变换将图像从空间域变换到频率域,然后在频率域对频谱进行操作和处理,再将其反变换到空间域,从而得到增强后
10、的图像。如下图所示:点运算图像增强空域方法空域滤波频域方法低通滤波高通滤波彩色图像灰度变换增强直方图增强图像平滑图像锐化带通-带阻滤波同态滤波点运算图像增强空域方法空域滤波频域方法低通滤波高通滤波彩色图像灰度变换增强直方图增强图像平滑图像锐化带通-带阻滤波同态滤波真彩色图像假彩色图像线性灰度增强分段线性灰度增强、非线性灰度增强直方图均衡化直方图规定化噪声消除法领域平均法中值滤波法梯度倒数加权选择式模板平滑梯度法拉普拉斯算子高斯-拉普拉斯算子模板匹配法统计差值法上述图像增强方法中,灰度变换是针对图像某一部分或整幅图像曝光不足而使用的灰度级变换,目的是增强图像灰度对比度;而直方图修正则是通过变换拉
11、开图像的灰度范围或使灰度级分布在动态范围内趋于均匀,从而增强反差,使图像细节清晰。空域滤波的机理是在待处理的图像中逐点的移动模板,滤波器在该点的响应通过事先定义的滤波器的系数与滤波模板扫描区域的相应像素值关系来计算,平滑滤波的目的在于消除混杂在图像中的干扰因素,强化图像表现特征,锐化滤波的目的在于增强图像边缘,对图像进行识别和处理。由于各种图像增强算法的特点不同,对图像增强的侧重点也不同。在对图像进行处理之前,首先分析不同图像增强方法的优缺点,再对具体图像问题进行具体分析,然后选择几种增强方法结合使用,也许就可能达到预期的增强效果。比较典型的图像增强方法主要有灰度变换、灰度直方图、图像平滑和边
12、缘增强等。4.5.图像复原图像复原首先要从分析图像退化机理着手,用数学模型描述图像的退化过程,然后在退化模型的基础上,通过求其逆过程的模式计算,从退化图像中较准确的求出真实图像,恢复图像和原始信息,模糊或者退化图像可以通过如下公式来使图像复原:g=Hf+n,其中,g为模糊图像(退化图像);H为失真算子,也称为点扩散函数(PSF);f为原始图像,n为噪声。图像复原的方法有很多,例如维纳滤波、盲解卷积算法和Lucy-Richardson算法。由于维纳滤波和Lucy-Richardson都需要确知PSF,因此在图像的复原中盲卷积的方法使用比较多,盲卷积恢复图像的原理是,首先模拟模糊(退化)图像,估计
13、出引起模糊(退化)的因素(此因素与原始图像卷积后导致了图像了模糊或者退化),该因素可能为gaussian、motion、log等滤波器,然后初始化此PSF,一般选择全1数组作为初始化PSF,利用权重改善复原的效果,权重是一个与输入图像大小相同的矩阵,最后利用deconvblind函数进行图像复原。图像分割图像分割就是把图像分成若干个特定的、具有独特性质的区域,其中每一个区域都是像素的一个连续集。它是图像处理到图像分析的关键步骤。常用的分割方法主要分为基于区域的分割方法和基于边缘的分割方法2类。此外,随着各学科的发展出现了一些结合某种特定理论的分割方法。下面就对常用的几类分割方法做以说明。基于区
14、域的分割方法这类方法的基本思想是将图像分割成若干不重叠的区域,使各区域内部特征的相似性大于区域间特征的相似性,各区域内像素都满足基于灰度、纹理等特征的某种相似性准则。下面介绍几种常见的区域分割法:阈值法阈值法图像分割方法就是提取目标物体与背景在灰度上的差异,把图像分为具有不同灰度级的目标区域和背景区域的组合。阈值分割算法主要有两个步骤:其一,确定最佳分割阈值;其二,将像素灰度值与分割阈值比较,实现区域的归属划分。其优点是计算简单,不仅压缩数据,减少存储容量,而且能大大简化其后的分析处理。区域生长法区域生长的基本思想是将具有相似性质的像素集合起来构成区域。首先对需要分割的区域找一个种子像素作为生
15、长的起点,将种子像素周围领域中与它有相同或相似性质的像素,根据某种事先确定的生长或相似准则来判定,合并到种子像素所在的区域中,将这些新像素当做新的种子像素继续进行上面的过程,直到再没有满足条件的像素可被包括进来,这样一个区域就生成了。区域生长法的固有缺点是往往会造成过度分割。分裂合并法分裂合并法是一种比较常用的区域分割方法,它利用了图像数据的金字塔或四叉树数据结构的层次概念,将图像划分成一组任意不相交的初始区域,即可以从图像的这种金字塔或四叉树数据结构的任一中间层开始,根据给定的均匀性检测准则进行分裂和合并这些区域,逐步改善区域划分的性能,直至最后将图像分成数量最少的均匀区域为止。分裂合并法对
16、分割复杂的场景图像比较有效。基于边缘的分割方法边缘的主要表现为图像局部特征的不连续性,该方法首先检出图像中局部特性的不连续性或突变性,然后将它们连成边界,这些边界把图像分成不同的区域。下面介绍几种常见的边缘分割法:微分算子法图像中相邻的不同区域间总存在边缘,边缘处象素的灰度值不连续,这种不连续性可通过求导数来检测到。对于阶跃状边缘,其位置对应一阶导数的极值点,对应二阶导数的过零点(零交叉点),因此常用微分算子进行边缘检测,它是一种并行边界技术。常用的一阶微分算子有Roberts、Prewitt和Sobel算子,二阶微分算子有Laplace和Kirsh算子。由于边缘和噪声都是灰度不连续点,在频域
17、均为高频分量,直接采用微分运算难以克服噪声的影响。因此用微分算子检测边缘前要对图像进行平滑滤波。LOG算子和Canny算子是具有平滑功能的二阶和一阶微分算子,边缘检测效果较好。串行边界技术串行边界查找法是先检测边缘再串行连接成闭合边界的方法。这种方法在很大程度上受起始点的影响。图搜索是其中一种典型的方法,边界点和边界段可以用图结构表示。通过在图中进行搜索对应最小代价的路径可以找到闭合边界。它是一种全局的方法,在噪声较大时效果仍很好,但这种方法比较复杂,计算量也很大。区域和边界技术相结合的分割方法在实际应用中,为发挥各种方法的优势,克服它们的缺陷以获得更好的分割效果。经常把各种方法结合起来使用。
18、例如,基于区域的分割方法往往会造成图像的过度分割。而单纯的基于边缘检测方法有时不能提供较好的区域结构。为此可将基于区域的方法和边缘检测的方法结合起来解决这个问题。基于特定理论的分割方法图像分割至今尚无通用的自身理论。随着各学科许多新理论和新方法的提出,出现了许多与一些特定理论、方法相结合的图像分割方法。基于模糊集理论的方法模糊理论具有描述事物不确定性的能力,适合于图像分割问题。近年来,出现了许多模糊分割技术,在图像分割中的应用日益广泛。目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。基
19、于小波变换的方法小波变换是近年来得到了广泛应用的数学工具。它在时域和频域都具有良好的局部化性质,将时域和频域统一于一体来研究信号。二进小波变换具有检测二元函数的局部突变能力,因此可作为图像边缘检测工具。图像的边缘出现在图像局部灰度不连续处,对应于二进小波变换的模极大值点。基于聚类分析的方法特征空间聚类法进行图像分割是将图像空间中的像素用对应的特征空间点表示,根据它们在特征空间的聚集对特征空间进行分割,然后将它们映射回原图像空间,得到分割结果。其中,K均值、模糊C均值聚类(FCM)算法是最常用的聚类算法。基于神经网络的方法神经网络方法分割图像的思想是用训练样本集对神经网络进行训练以确定节点间的连
20、接和权值,再用训练好的神经网络分割新的图像数据。这种方法需要大量的训练数据,神经网络存在巨量的连接,容易引入空间信息。能较好地解决图像中的噪声和不均匀问题,选择何种网络结构是这种方法要解决的主要问题。基于数学形态学的方法它的基本思想是用具有一定形态的结构元素去量度和提取图像中的对应形状以达到对图像分析和识别的目的。图像描述将图像分割为区域后,接下来通常要将分割区域加以表示与描述,以方便计算机处理。图像描述也是图像识别的必要前提。作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。随着图
21、像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。图像识别图像识别内容图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对象。主要内容是图像经过某些预处理后,进行图像分割和特征提取,从而进行判决分类。图像特征提取的作用是对视频图像信息进行整理、分析、归纳,抽取能反映图像本质的特征,得到可用于判决的参量。判决或分类是指通过对特征量/参量与阈值进行计算、比较和分析,判断出图像的状态或本质,得到最终的输出结果。在变电站中,图像识别内容具体包括对设备信号灯的亮与灭、指针位置、7段式数字、开关位置和变压器油液面位置进行监控和识别告警,这些内容在对图像进行预处理和图像分割后均可识别出来。图像识别算法直接从图像原始灰度图提取特征,效率高,但容易提取出大量的伪特征信息。基于全局结构特征的分类方法,通过提取和分析方向图、奇异点等全局结构特征来实现分类。采用模仿人类
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网吧光钎接入合同范本
- 街边旺铺出租合同范本
- 滚珠螺杆采购合同范本
- 酒店保洁托管合同范本
- 2025年初中三年级英语上学期词汇专项训练卷
- 衣柜安装承揽合同范本
- 连云港市集体合同范本
- 网约车合作协议书合同
- 租房合同伤亡补充协议
- 货车买卖租赁合同协议
- 2025年广东省继续教育公需课《人工智能赋能制造业高质量发展》满分答案
- 2026届浙江杭州市高三一模英语读后续写解析课件(含范文)
- 2025年考研英语二真题及答案解析(完整版)
- 2025-2026新版人教版8八年级数学上册(全册)教案设计
- Unit1HappyHolidaySectionB1a1d教学课件-人教版八年级英语上册
- 细菌性支气管肺炎的护理个案
- 地暖施工方案
- 车位过户网签合同范本
- 2025年医疗健康保健品营销策略
- 2025独家代理商合同协议书范本
- DB32T 5180-2025装配式钢筋骨架卡模体系应用技术标准
评论
0/150
提交评论