EViews计量经济学实验报告-多重共线性的诊断与修正的讨论_第1页
EViews计量经济学实验报告-多重共线性的诊断与修正的讨论_第2页
EViews计量经济学实验报告-多重共线性的诊断与修正的讨论_第3页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

实验题目多重共线性的诊断与修正一、实验目的与要求:要求目的:1二、实验内容根据书上第四章引子“农业的发展反而会减少财政收入,197-2007业增加值等数据,运用EV三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)(一)模型设定及其估计研究“农业的发展反而会减少财政收入”这个问题。1设定如下形式的计量经济模:Y=+ X+ X + X + X + X + X +1i 2 2 3 3 4 4 5 5 6 6 7 7 i其中,Yi

为财政收入CS/亿元;X2

为农业增加值NZ/亿元;X3

为工业增加值GZ/亿元;X4

为建筑业增加值JZZ/亿元;X 为总人口TPOP/X5

为最终消费CUM/亿元;X7

为受灾面积SZM/千公顷。图1: 1978~2007年财政收入及其影响因素数据年份 亿元

农业增工业增加加值值GZ/亿NZ/亿元元

建筑业增加值JZZ/亿元

总人口TPOP/万人

最终消费受灾面CUM/亿元千公顷19781132。31027。51607138。2962592239。15079019791146。41270。21769。7143。8975422633.73937019801159.91371.61996.5195。5987053007。94452619811175.81559.52048。4207。11000723361。53979019821212.31777。42162。3220。71016543714.833130198313671978。42375。6270.61030084126。43471019841642。92316.12789316。71043574846。33189019852004。82564。43448.7417。91058515986。344365198621222788.73967525.71075076821.84714019872199.432334585。8665.81093007804.64209019882357.23865。45777。28101110269839.55087019892664。94265.9648479411270411164。24699119902937。150626858859.411433312090。53847419913149。485342。28087。11015。111582314091.95547219923483。375866。610284.5141511717117203。35133319934348.956963。8141882266。511851721899.94882919945218。19572。719480。72964。711985029242.25504319956242.212135824950。63728.812112136748。24582119967407.9914015429447。64387。412238943919。54698919978651.1414441932921。44621。612362648140.65342919989875。9514817.634018.44985。812476151588.250145199911444.081477035861。55172.112578655636。949981200013395.2314944.7400365522。31267436151654688200116386.0415781.343580.65931。712762766878.352215200218903641653747431.36465.512845371691.2471192003217152517381754945.57490.812922777449。55450620042639647214127652108694.312998887032。937106200531649.292242076912.910133813075696918.138818200638760.22404091310。9118511131448110595.3410912007513217828095107367.2140141132129128444648992EVY、XX、X、X、XX等数据,采用这些数据对模型进行OLS回归。i 2 3 4 5 6 7(二)诊断多重共线性1EviewFile/Open/EVWorkfil—Excexls2、在EVlsycx2x3x4x5x6xEnteOLS:图2: OLS回归结果DependentVariable:YMethod:LeastSquaresDate:10/12/10 Time:Sample:19782007Includedobservations:30Variable

Coefficient Std

t—Statistic Prob.C—6646。6946454。156—1.0298320。3138X2-0.9706880.330409—2。9378410。0074X31.0846540。2285214。7463970.0001X4-2.7639282.076994—1。3307350。1963X50。0776130.0679741。1418080。2653X6-0.0471190。081509-0。5780840.5688X70.0075800。0350390.2163290。8306R-squared0。994565Meandependentvar10049.04AdjustedR-squared0.993147S.D.dependentvar12585。51S.E.ofregression1041.849Akaikeinfocriterion16.93634Sumsquaredresid24965329Schwarzcriterion17。26329Loglikelihood-247.0452F—statistic701.4747Durbin—Watsonstat2.167410Prob(F-statistic)0.000000由此可见,该模型的可决系数为0.995,修正的可决系数为0.993,模型拟和很好,F统计量为701。47,模型拟和很好,回归方程整体上显著。但是当=005时,t (nk)=t (23)=2069,不仅X4、X5、X6、X7的系数t检验不显,而且X2、X4、X6系/2 0.025数的符号与预期相反,这表明很可能存在严重的多重共线性(即除了农业增加值X 、工业增加值X外,其他因素对2 3财政收入的影响都不显著,且农业增加值X、建筑业增加值X、最终消费X的回归系数还是负数,这说明很可能存2 4 6在严重的多重共线性.)3、计算各解释变量的相关系数:在Workfile窗口,选择X2、X3、X4、X5、X6、X7数据,点击“Quick”-GroupStatistics—Correlations-OK,出现相关系数矩阵,如图3:图3:相关系数矩阵X2X3X4X5X6X70。0。0.9729806145982660623490.92797842940.988962619722619996587X2161479789067452466724650。0。0。0.9729806145998521808390.84390020659926412367112944371033X361471318868758178462150。0。0。982660623490.99852180830.86415213599960568434415464571840X4978993188128051159643530。0.92797842940.8439002065864152135920.88884805550.3877672648X506745687588051146979087870。0。0。0.988962619799264123671996056843440.88884805551858085X6246671784159646979115820。0。0。0.22619996580.129443710315464571840387767264801858085X772465362154353878715821由相关系数矩阵可以看出,各解释变量相互之间的相关系数较高,特别是农业增加值X2

、工业增加值X3

、建筑业增加值X4

、最终消费之间X6

,相关系数都在0.8以上。这表明模型存在着多重共线性。(三)修正多重共线性1、采用逐步回归法,去检验和解决多重共线性问题。分别作Y对X2、X3、X4、X5、X6、X7的一元回归,结果如下图4:在EVlsycx2DependentVariable:Method:LeastSquaresDate:10/12/10 Time:Sample:19782007Includedobservations:30Variable

Coefficient

Std.Error t-Statistic Prob。C—4086。5441463。091—2.7930900.0093X21.4541860。11723512.403980.0000R—squared0.846034Meandependentvar10049。04AdjustedR-squared0.840536S.D。dependentvar12585.51S。E.ofregression5025.770Akaikeinfocriterion19.94689SumsquaredresidLoglikelihood07E+08—297。2033SchwarzcriterionF—statistic20.04030153.8588Durbin-Watsonstat0。166951Prob(F-statistic)0.000000依次如上推出X3、X4、X5、X6、X7的一元回归。综上所述,结果如下图4:图4。一元回归估计结果变量X2X3X4X5X6X7参数估计值1.45418604268173186851082978903303540.111530t统计量12.40398289016822.67733620602518.128950320338R20.84603409675670.94836405790410.9214940003651R20。8405360966408094652005640060.918690-0.0319322、其中,加入X的R2最大,以X为基础,顺次加入其他变量逐步回归。结果如下图5:3 3DependentVariable:YMethod:LeastSquaresDate:10/13/10 Time:01:27Sample:19782007Includedobservations:30Variable

Coefficient

Std.Error

t-Statistic

Prob。C1976。086388。24135。0898410。0000—1.10533X290。105222—10.504860.0000X30.7219890。02887925.000560。0000R-squared0.993624Meandependentvar10049.04AdjustedR-squared0.993152S。Ddependentvar12585。51S.E.ofregression1041.474Akaikeinfocriterion16。82930Sumsquaredresid29286057Schwarzcriterion16。96942Loglikelihood-249.4395F—statistic2103.946Durbin-Watsonstat1.662637Prob(F—statistic)0。000000依照上面,在顺次加入X4、X5、X6、X7,进行逐步回归。综合结果如下图5:变量X2X3变量X2X3X4X5X6X7R2-1.1053390。721989X3X20.993152X3X40.990547X3X50。98301X3,X60。985025X3X70.970053(—10.50486)(25.00056)1。65227—9。255748(11.46367)0.514796(-8.514941)-0。261997(26.29703)0.910503(-5。325453)-0。386459(11.18199)0.430639(—5。984236)—0.125579(30。62427)(-2。099504)经比较,新加入X的方程R2=0.993152,改进最大,但是X得系数为负,这显然不符题意。2 在X的基础上分别加入其他变量后发现,XX2 3 2 4

,X ,X6

的系数都为负,与预期估计违背。因此这些变量都会引起严重的多重共线性,全部剔除,只保留X3DependentVariable:Method:LeastSquaresDate:10/12/10 Time:Sample:19782007Includedobservations:30

。修正的回归结果为:Variable

Coefficient

Std.Error t—Statistic Prob.C X3 0

570。5337 -1。8847080.014768 。90168

0.06990.0000R—squaredAdjustedR—squaredS.E.ofregressionSumsquaredresidLoglikelihoodDurbin—Watsonstat

0967567 Meandependentvar0966408 S。D。dependent2306678 Akaikeinfocriterion149E+08 Schwarzcriterion-2738402 F-statistic0292531 Prob(F-statistic)

100490412585.513893518.48276835.30740.000000=-1075。289+ 0.426817Xi 3(-1。884708)(28。90168)R2=0。967567 R2=0.966408 F=835.3074这说明在其他因素不变的情况下,工业增加值每增加10.426817亿元。四、实践结果报告:1978-2007增加值等数据,运用EV最后修正的回归结果为:=—1075.289+ 0.426817Xi 3(-1.884708)(28.90168)R2=0.967567 R2=0.966408 F=835。3074这说明在其他因素不变的情况下,工业增加值每增加1亿元,财政收入平均增加0.426817亿元。0.967567835。3074,说明整个方程显著;t28。t统计量,t检验显著,符合题意.逐步回归后的结果虽然实现了减轻多重共线性的目的,但反映农业增加值,建筑业增加值的X2,X3等也一并从模型中剔除出去了,可能会带来设定偏误,这是在使用逐步回归时需要注意的问题。附加:1、分别作Y对X2、X3、X4、X5、X6、X7的一元回归,结果如下:lsycx2DependentVariable:YMethod:LeastDate:10/12/10 Time:Sample:19782007Includedobservations:30Variable

Coefficient

Std.Error t—Statistic Prob。—4086C 544

1463。091 -2。

0.0093X2 1.454186 0.117235 12.40398 0.0000R—squaredAdjustedR-squaredS。E.ofregressionSumsquaredresidLoglikelihoodDurbin—Watsonstat

0.846034 Meandependentvar0840536 S。D。dependent5025770 Akaikeinfocriterion7.07E+08 Schwarzcriterion-297.2033 F-statistic0.166951 Prob(F-statistic)

100490412585.519468904030153.8588000000lsycx3DependentVariable:Method:LeastSquaresDate:10/12/10 Time:Sample:19782007Includedobservations:30VariableCX3

Coefficient-10750

Std.570。0。

t-Statistic-1.88470828。

Prob。0.0699。0000R—squared0.967567Meandependentvar10049.04AdjustedR-squared0.966408S。D.dependentvar12585.51S。E.ofregression2306。678Akaikeinfocriterion18.38935Sumsquaredresid1.49E+08Schwarzcriterion18。48276—273。Loglikelihood8402F—statistic835。3074Durbin—Watsonstat0.292531Prob(F-statistic)0。000000lsycx4DependentVariable:YMethod:LeastSquaresDate:10/12/10 Time:17:50Sample:19782007Includedobservations:30VariableCoefficientStd。Errort-StatisticProb.C—1235。177727.9896-1。6966950.1008X43。1868510.14053022。677330.0000R—squaredAdjustedR—squared

0948364 Meandependentvar0.946520 S.D。dependent

100490412585.51S.EofregressionSumsquaredresidLoglikelihoodDurbin—Watsonstat

2910.486 Akaikeinfocriterion2.37E+08 Schwarzcriterion—280.8155 F-statistic0215531 Prob(F-statistic)

854379477851426140.000000lsycx5DependentVariable:Method:LeastSquaresDate:10/12/10 Time:Sample:19782007Includedobservations:30VariableCoefficientStd.Errort-StatisticProb。C。4215618。35-5。5332600。0000X50。8297890.1337076。2060250。0000R—squared0。579041Meandependentvar10049.04AdjustedR—squared0。564006S.D.dependentvar12585。51S。Eofregression8310.188Akaikeinfocriterion20。95269SumsquaredresidLoglikelihood1.93E+09—312.2904SchwarzcriterionF—statistic21.0461138.51474Durbin—Watsonstat0。132458Prob(F—statistic)0.000001lsycx6DependentVariable:YMethod:LeastDate:10/12/10 Time:Sample:19782007Includedobservations:30Variable

Coefficient Std

t—Statistic Prob.C -2026X6 0.330354

934.3495—2。0.018222

0.03870.0000R-squaredAdjustedR—squared

0921494 Meandependentvar0918690 S.D。dependent

10049041258551S。E。ofregression 3588750 Akaikeinfocriterion 19.27334SumsquaredresidLoglikelihood

361E+08 Schwarzcriterion—287.100 F—statistic

3667532865890Durbin—Watsonstat 0189127 Prob(F—statistic) 0.000000lsycx7DependentVariable:YMethod:LeastDate:10/12/10 Time:Sample:19782007Includedobservations:30Variable

Coefficient Std

t—Statistic

Prob。C 4934X7 0

16135。0。

。3058250.320338

。76200.7511R-squaredAdjustedR-squaredS。E.ofregressionSumsquaredresid003651-012784.874.58E+09MeandependentvarS。D.dependentAkaikeinfocriterionSchwarzcriterion100490412585518142590767—325。Loglikelihood2138F-statistic0。102616Durbin-Watsonstat0。065981Prob(F-statistic)0.7510912、以X3为基础,顺次加入其他变量逐步回归。X3、X2:DependentVariable:YMethod:LeastSquaresDate:10/13/10 Time:Sample:19782007Includedobservations:30VariableCoefficientStd。Errort-StatisticProb.C1976.086388.24135.0898410。0000X2。1053390.105222—10.504860。0000X30。7219890.02887925.000560。0000R-squared0.993624Meandependentvar10049。04AdjustedR—squared0。993152S.D.dependentvar12585.51S。Eofregression1041。474Akaikeinfocriterion16.82930Sumsquaredresid29286057Schwarzcriterion16.96942Loglikelihood-249.4395F—statistic2103.946Durbin—Watsonstat1.662637Prob(F—statistic)0.000000X3、X4:DependentVariable:YMethod:LeastSquaresDate:10/13/10 Time:01:27Sample:19782007Includedobservations:30Variable

Coefficient Std

t-Statistic

Prob.C-2414297318。0985-0。7589780。4544X31.6522700.14413111.463670.0000X4—9.2557481。087001—8.5149410。0000R—squared0.991199Meandependentvar10049.04AdjustedR—squared0.990547S.D.dependentvar12585.51S。E.ofregression1223。617Akaikeinfocriterion17。15165SumsquaredresidLoglikelihood40425409—254.2747SchwarzcriterionF—statistic17.291771520477Durbin—Watsonstat1.669559Prob(F—statistic)0.000000X3、X5:DependentVariable:Method:LeastSquaresDate:10/13/10 Time:Sample:19782007Includedobservations:30VariableCoefficientStd.Errort-StatisticProb.C27090.895304.5145.1071380.0000X30.5147960。01957626.297030.0000X5—0.2619970。049197—5。3254530.0000R-squared0.984182Meandependentvar10049.04AdjustedR-squared0。983010S。D。dependentvar12585.51S。Eofregression1640.462Ak

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论