



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为()A. B.C. D.2.已知函数的图象向左平移个单位后得到函数的图象,则的最小值为()A. B. C. D.3.已知等比数列满足,,等差数列中,为数列的前项和,则()A.36 B.72 C. D.4.已知等边△ABC内接于圆:x2+y2=1,且P是圆τ上一点,则的最大值是()A. B.1 C. D.25.()A. B. C. D.6.已知是边长为的正三角形,若,则A. B.C. D.7.已知复数,则()A. B. C. D.28.下列命题是真命题的是()A.若平面,,,满足,,则;B.命题:,,则:,;C.“命题为真”是“命题为真”的充分不必要条件;D.命题“若,则”的逆否命题为:“若,则”.9.已知抛物线的焦点为,是抛物线上两个不同的点,若,则线段的中点到轴的距离为()A.5 B.3 C. D.210.已知是定义是上的奇函数,满足,当时,,则函数在区间上的零点个数是()A.3 B.5 C.7 D.911.已知复数,,则()A. B. C. D.12.若双曲线:绕其对称中心旋转后可得某一函数的图象,则的离心率等于()A. B. C.2或 D.2或二、填空题:本题共4小题,每小题5分,共20分。13.设等差数列的前项和为,若,,则______,的最大值是______.14.三个小朋友之间送礼物,约定每人送出一份礼物给另外两人中的一人(送给两个人的可能性相同),则三人都收到礼物的概率为______.15.在平面直角坐标系中,圆.已知过原点且相互垂直的两条直线和,其中与圆相交于,两点,与圆相切于点.若,则直线的斜率为_____________.16.已知集合,,则____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知x,y,z均为正数.(1)若xy<1,证明:|x+z|⋅|y+z|>4xyz;(2)若=,求2xy⋅2yz⋅2xz的最小值.18.(12分)已知矩阵的逆矩阵.若曲线:在矩阵A对应的变换作用下得到另一曲线,求曲线的方程.19.(12分)若不等式在时恒成立,则的取值范围是__________.20.(12分)已知三棱柱中,,是的中点,,.(1)求证:;(2)若侧面为正方形,求直线与平面所成角的正弦值.21.(12分)已知在平面四边形中,的面积为.(1)求的长;(2)已知,为锐角,求.22.(10分)已知,函数.(1)若函数在上为减函数,求实数的取值范围;(2)求证:对上的任意两个实数,,总有成立.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【答案解析】
设,则,小正六边形的边长为,利用余弦定理可得大正六边形的边长为,再利用面积之比可得结论.【题目详解】由题意,设,则,即小正六边形的边长为,所以,,,在中,由余弦定理得,即,解得,所以,大正六边形的边长为,所以,小正六边形的面积为,大正六边形的面积为,所以,此点取自小正六边形的概率.故选:D.【答案点睛】本题考查概率的求法,考查余弦定理、几何概型等基础知识,考查运算求解能力,属于基础题.2.A【答案解析】
首先求得平移后的函数,再根据求的最小值.【题目详解】根据题意,的图象向左平移个单位后,所得图象对应的函数,所以,所以.又,所以的最小值为.故选:A【答案点睛】本题考查三角函数的图象变换,诱导公式,意在考查平移变换,属于基础题型.3.A【答案解析】
根据是与的等比中项,可求得,再利用等差数列求和公式即可得到.【题目详解】等比数列满足,,所以,又,所以,由等差数列的性质可得.故选:A【答案点睛】本题主要考查的是等比数列的性质,考查等差数列的求和公式,考查学生的计算能力,是中档题.4.D【答案解析】
如图所示建立直角坐标系,设,则,计算得到答案.【题目详解】如图所示建立直角坐标系,则,,,设,则.当,即时等号成立.故选:.【答案点睛】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.5.D【答案解析】
利用,根据诱导公式进行化简,可得,然后利用两角差的正弦定理,可得结果.【题目详解】由所以,所以原式所以原式故故选:D【答案点睛】本题考查诱导公式以及两角差的正弦公式,关键在于掌握公式,属基础题.6.A【答案解析】
由可得,因为是边长为的正三角形,所以,故选A.7.C【答案解析】
根据复数模的性质即可求解.【题目详解】,,故选:C【答案点睛】本题主要考查了复数模的性质,属于容易题.8.D【答案解析】
根据面面关系判断A;根据否定的定义判断B;根据充分条件,必要条件的定义判断C;根据逆否命题的定义判断D.【题目详解】若平面,,,满足,,则可能相交,故A错误;命题“:,”的否定为:,,故B错误;为真,说明至少一个为真命题,则不能推出为真;为真,说明都为真命题,则为真,所以“命题为真”是“命题为真”的必要不充分条件,故C错误;命题“若,则”的逆否命题为:“若,则”,故D正确;故选D【答案点睛】本题主要考查了判断必要不充分条件,写出命题的逆否命题等,属于中档题.9.D【答案解析】
由抛物线方程可得焦点坐标及准线方程,由抛物线的定义可知,继而可求出,从而可求出的中点的横坐标,即为中点到轴的距离.【题目详解】解:由抛物线方程可知,,即,.设则,即,所以.所以线段的中点到轴的距离为.故选:D.【答案点睛】本题考查了抛物线的定义,考查了抛物线的方程.本题的关键是由抛物线的定义求得两点横坐标的和.10.D【答案解析】
根据是定义是上的奇函数,满足,可得函数的周期为3,再由奇函数的性质结合已知可得,利用周期性可得函数在区间上的零点个数.【题目详解】∵是定义是上的奇函数,满足,,可得,
函数的周期为3,
∵当时,,
令,则,解得或1,
又∵函数是定义域为的奇函数,
∴在区间上,有.
由,取,得,得,
∴.
又∵函数是周期为3的周期函数,
∴方程=0在区间上的解有共9个,
故选D.【答案点睛】本题考查根的存在性及根的个数判断,考查抽象函数周期性的应用,考查逻辑思维能力与推理论证能力,属于中档题.11.B【答案解析】分析:利用的恒等式,将分子、分母同时乘以,化简整理得详解:,故选B点睛:复数问题是高考数学中的常考问题,属于得分题,主要考查的方面有:复数的分类、复数的几何意义、复数的模、共轭复数以及复数的乘除运算,在运算时注意符号的正、负问题.12.C【答案解析】
由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,所以或,由离心率公式即可算出结果.【题目详解】由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,又双曲线的焦点既可在轴,又可在轴上,所以或,或.故选:C【答案点睛】本题主要考查了双曲线的简单几何性质,函数的概念,考查了分类讨论的数学思想.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
利用等差数列前项和公式,列出方程组,求出首项和公差的值,利用等差数列的通项公式可求出数列的通项公式,可求出的表达式,然后利用双勾函数的单调性可求出的最大值.【题目详解】(1)设等差数列的公差为,则,解得,所以,数列的通项公式为;(2),,令,则且,,由双勾函数的单调性可知,函数在时单调递减,在时单调递增,当或时,取得最大值为.故答案为:;.【答案点睛】本题考查等差数列的通项公式、前项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是中档题.14.【答案解析】
基本事件总数,三人都收到礼物包含的基本事件个数.由此能求出三人都收到礼物的概率.【题目详解】三个小朋友之间准备送礼物,约定每人只能送出一份礼物给另外两人中的一人(送给两个人的可能性相同),基本事件总数,三人都收到礼物包含的基本事件个数.则三人都收到礼物的概率.故答案为:.【答案点睛】本题考查古典概型概率的求法,考查运算求解能力,属于基础题.15.【答案解析】
设:,:,利用点到直线的距离,列出式子,求出的值即可.【题目详解】解:由圆,可知圆心,半径为.设直线:,则:,圆心到直线的距离为,,.圆心到直线的距离为半径,即,并根据垂径定理的应用,可列式得到,解得.故答案为:.【答案点睛】本题主要考查点到直线的距离公式的运用,并结合圆的方程,垂径定理的基本知识,属于中档题.16.【答案解析】
由于,,则.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析;(2)最小值为1【答案解析】
(1)利用基本不等式可得,再根据0<xy<1时,即可证明|x+z|⋅|y+z|>4xyz.(2)由=,得,然后利用基本不等式即可得到xy+yz+xz≥3,从而求出2xy⋅2yz⋅2xz的最小值.【题目详解】(1)证明:∵x,y,z均为正数,∴|x+z|⋅|y+z|=(x+z)(y+z)≥=,当且仅当x=y=z时取等号.又∵0<xy<1,∴,∴|x+z|⋅|y+z|>4xyz;(2)∵=,即.∵,,,当且仅当x=y=z=1时取等号,∴,∴xy+yz+xz≥3,∴2xy⋅2yz⋅2xz=2xy+yz+xz≥1,∴2xy⋅2yz⋅2xz的最小值为1.【答案点睛】本题考查了利用综合法证明不等式和利用基本不等式求最值,考查了转化思想和运算能力,属中档题.18.【答案解析】
根据,可解得,设为曲线任一点,在矩阵对应的变换作用下得到点,则点在曲线上,根据变换的定义写出相应的矩阵等式,再用表示出,代入曲线的方程中,即得.【题目详解】,,即.,解得,.设为曲线任一点,则,又设在矩阵A变换作用得到点,则,即,所以即代入,得,所以曲线的方程为.【答案点睛】本题考查逆矩阵,矩阵与变换等,是基础题.19.【答案解析】
原不等式等价于在恒成立,令,,求出在上的最小值后可得的取值范围.【题目详解】因为在时恒成立,故在恒成立.令,由可得.令,,则为上的增函数,故.故.故答案为:.【答案点睛】本题考查含参数的不等式的恒成立,对于此类问题,优先考虑参变分离,把恒成立问题转化为不含参数的新函数的最值问题,本题属于基础题.20.(1)证明见解析(2)【答案解析】
(1)取的中点,连接,,证明平面得出,再得出;(2)建立空间坐标系,求出平面的法向量,计算,即可得出答案.【题目详解】(1)证明:取的中点,连接,,,,,,,故,又,,平面,平面,,,分别是,的中点,,.(2)解:四边形是正方形,,又,,平面,平面,在平面内作直线的垂线,以为原点,以,,为所在直线为坐标轴建立空间直角坐标系,则,0,,,1,,,2,,,0,,,1,,,2,,,1,,设平面的法向量为,,,则,即,令可得:,,,,.直线与平面所成角的正弦值为,.【答案点睛】本题主要考查了线面垂直的判定与性质,考查空间向量与空间角的计算,属于中档题.21.(1);(2)4.【答案解析】
(1)利用三角形的面积公式求得,利用余弦定理求得.(2)利用余弦定理求得,由此求得,进而求得,利用同角三角函数的基本关系式求得.【题目详解】(1)在中,由面积公式:在中,由余弦定理可得:(2)在中,由余弦定理可得:在中,由正弦定理可得:,为锐角.【答案点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角形面积公式,考查同角三角函数的基本关系式,属于中档题.22.(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度多功能办公设备集成解决方案合同范本
- 二零二五年文化产品LOGO定制合同范本
- 二零二五年特色餐饮总经理职务合同
- 2025版信息技术咨询服务标准服务合同
- 2025年地下综合管廊安装工程承包合同范本
- 2025版博物馆布展工程景观绿化合同范本
- 二零二五年度便利店加盟合同中关于加盟店装修及维护
- 二零二五年度XX污水厂污水处理厂厂内设备维护合同
- 二零二五年婚庆场地出租与婚礼场地背景搭建合同模板
- 二零二五年度大数据分析服务采购合同范本
- 中国氢燃料电池用铂催化剂项目商业计划书
- 2025届内蒙古自治区海勃湾区七年级数学第二学期期末检测试题含解析
- 全氢聚硅氮烷转化为氧化硅的机理剖析与多元应用探索
- 物业项目合伙协议书
- 2025年河南省南阳市方城县多校中考二模 化学试题(含答案)
- 国家职业标准 6-11-01-03 化工总控工S (2025年版)
- 入团考试高效复习秘籍试题及答案
- JT-T 600-2025 公路用防腐蚀粉末涂料及涂层
- 2025-2030中国先进陶瓷材料行业市场发展趋势与前景展望战略研究报告
- 临床成人床旁心电监测护理规程
- 集采药品培训
评论
0/150
提交评论