



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行下面的程序框图,则输出的值为()A. B. C. D.2.盒中装有形状、大小完全相同的5张“刮刮卡”,其中只有2张“刮刮卡”有奖,现甲从盒中随机取出2张,则至少有一张有奖的概率为()A. B. C. D.3.《九章算术》中将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的外接球的表面积为()A.4π B.8π C. D.4.在钝角中,角所对的边分别为,为钝角,若,则的最大值为()A. B. C.1 D.5.已知集合,则()A. B. C. D.6.已知函数,则不等式的解集是()A. B. C. D.7.我国宋代数学家秦九韶(1202-1261)在《数书九章》(1247)一书中提出“三斜求积术”,即:以少广求之,以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积.其实质是根据三角形的三边长,,求三角形面积,即.若的面积,,,则等于()A. B. C.或 D.或8.已知若在定义域上恒成立,则的取值范围是()A. B. C. D.9.为比较甲、乙两名高二学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为5分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述正确的是()A.乙的数据分析素养优于甲B.乙的数学建模素养优于数学抽象素养C.甲的六大素养整体水平优于乙D.甲的六大素养中数据分析最差10.已知双曲线:(,)的焦距为.点为双曲线的右顶点,若点到双曲线的渐近线的距离为,则双曲线的离心率是()A. B. C.2 D.311.若数列为等差数列,且满足,为数列的前项和,则()A. B. C. D.12.设,分别为双曲线(a>0,b>0)的左、右焦点,过点作圆的切线与双曲线的左支交于点P,若,则双曲线的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图在三棱柱中,,,,点为线段上一动点,则的最小值为________.14.已知,,,,则______.15.设函数,则满足的的取值范围为________.16.函数在上的最小值和最大值分别是_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中,.(1)当时,求的值;(2)当的最小正周期为时,求在上的值域.18.(12分)在边长为的正方形,分别为的中点,分别为的中点,现沿折叠,使三点重合,构成一个三棱锥.(1)判别与平面的位置关系,并给出证明;(2)求多面体的体积.19.(12分)已知抛物线:的焦点为,过上一点()作两条倾斜角互补的直线分别与交于,两点,(1)证明:直线的斜率是-1;(2)若,,成等比数列,求直线的方程.20.(12分)已知椭圆:(),点是的左顶点,点为上一点,离心率.(1)求椭圆的方程;(2)设过点的直线与的另一个交点为(异于点),是否存在直线,使得以为直径的圆经过点,若存在,求出直线的方程;若不存在,说明理由.21.(12分)已知椭圆与x轴负半轴交于,离心率.(1)求椭圆C的方程;(2)设直线与椭圆C交于两点,连接AM,AN并延长交直线x=4于两点,若,直线MN是否恒过定点,如果是,请求出定点坐标,如果不是,请说明理由.22.(10分)在直角坐标系中,已知直线的直角坐标方程为,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线和直线的极坐标方程;(2)已知直线与曲线、相交于异于极点的点,若的极径分别为,求的值.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【答案解析】
根据框图,模拟程序运行,即可求出答案.【题目详解】运行程序,,
,,,,,结束循环,故输出,故选:D.【答案点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.2.C【答案解析】
先计算出总的基本事件的个数,再计算出两张都没获奖的个数,根据古典概型的概率,求出两张都没有奖的概率,由对立事件的概率关系,即可求解.【题目详解】从5张“刮刮卡”中随机取出2张,共有种情况,2张均没有奖的情况有(种),故所求概率为.故选:C.【答案点睛】本题考查古典概型的概率、对立事件的概率关系,意在考查数学建模、数学计算能力,属于基础题.3.B【答案解析】
由三视图判断出原图,将几何体补形为长方体,由此计算出几何体外接球的直径,进而求得球的表面积.【题目详解】根据题意和三视图知几何体是一个底面为直角三角形的直三棱柱,底面直角三角形的斜边为2,侧棱长为2且与底面垂直,因为直三棱柱可以复原成一个长方体,该长方体外接球就是该三棱柱的外接球,长方体对角线就是外接球直径,则,那么.故选:B【答案点睛】本小题主要考查三视图还原原图,考查几何体外接球的有关计算,属于基础题.4.B【答案解析】
首先由正弦定理将边化角可得,即可得到,再求出,最后根据求出的最大值;【题目详解】解:因为,所以因为所以,即,,时故选:【答案点睛】本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题.5.A【答案解析】
考虑既属于又属于的集合,即得.【题目详解】.故选:【答案点睛】本题考查集合的交运算,属于基础题.6.B【答案解析】
由导数确定函数的单调性,利用函数单调性解不等式即可.【题目详解】函数,可得,时,,单调递增,∵,故不等式的解集等价于不等式的解集..∴.故选:B.【答案点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.7.C【答案解析】
将,,,代入,解得,再分类讨论,利用余弦弦定理求,再用平方关系求解.【题目详解】已知,,,代入,得,即,解得,当时,由余弦弦定理得:,.当时,由余弦弦定理得:,.故选:C【答案点睛】本题主要考查余弦定理和平方关系,还考查了对数学史的理解能力,属于基础题.8.C【答案解析】
先解不等式,可得出,求出函数的值域,由题意可知,不等式在定义域上恒成立,可得出关于的不等式,即可解得实数的取值范围.【题目详解】,先解不等式.①当时,由,得,解得,此时;②当时,由,得.所以,不等式的解集为.下面来求函数的值域.当时,,则,此时;当时,,此时.综上所述,函数的值域为,由于在定义域上恒成立,则不等式在定义域上恒成立,所以,,解得.因此,实数的取值范围是.故选:C.【答案点睛】本题考查利用函数不等式恒成立求参数,同时也考查了分段函数基本性质的应用,考查分类讨论思想的应用,属于中等题.9.C【答案解析】
根据题目所给图像,填写好表格,由表格数据选出正确选项.【题目详解】根据雷达图得到如下数据:数学抽象逻辑推理数学建模直观想象数学运算数据分析甲454545乙343354由数据可知选C.【答案点睛】本题考查统计问题,考查数据处理能力和应用意识.10.A【答案解析】
由点到直线距离公式建立的等式,变形后可求得离心率.【题目详解】由题意,一条渐近线方程为,即,∴,,即,,.故选:A.【答案点睛】本题考查求双曲线的离心率,掌握渐近线方程与点到直线距离公式是解题基础.11.B【答案解析】
利用等差数列性质,若,则求出,再利用等差数列前项和公式得【题目详解】解:因为,由等差数列性质,若,则得,.为数列的前项和,则.故选:.【答案点睛】本题考查等差数列性质与等差数列前项和.(1)如果为等差数列,若,则.(2)要注意等差数列前项和公式的灵活应用,如.12.C【答案解析】
设过点作圆的切线的切点为,根据切线的性质可得,且,再由和双曲线的定义可得,得出为中点,则有,得到,即可求解.【题目详解】设过点作圆的切线的切点为,,所以是中点,,,.故选:C.【答案点睛】本题考查双曲线的性质、双曲线定义、圆的切线性质,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
把绕着进行旋转,当四点共面时,运用勾股定理即可求得的最小值.【题目详解】将以为轴旋转至与面在一个平面,展开图如图所示,若,,三点共线时最小为,为直角三角形,故答案为:【答案点睛】本题考查了空间几何体的翻折,平面内两点之间线段最短,解直角三角形进行求解,考查了空间想象能力和计算能力,属于中档题.14.【答案解析】
由已知利用同角三角函数的基本关系式可求得,的值,由两角差的正弦公式即可计算得的值.【题目详解】,,,,,,,,.故答案为:【答案点睛】本题主要考查了同角三角函数的基本关系、两角差的正弦公式,需熟记公式,属于基础题.15.【答案解析】
当时,函数单调递增,当时,函数为常数,故需满足,且,解得答案.【题目详解】,当时,函数单调递增,当时,函数为常数,需满足,且,解得.故答案为:.【答案点睛】本题考查了根据函数单调性解不等式,意在考查学生对于函数性质的灵活运用.16.【答案解析】
求导,研究函数单调性,分析,即得解【题目详解】由题意得,,令,解得,令,解得.在上递减,在递增.,而,故在区间上的最小值和最大值分别是.故答案为:【答案点睛】本题考查了导数在函数最值的求解中的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【答案解析】
(1)根据,得到函数,然后,直接求解的值;(2)首先,化简函数,然后,结合周期公式,得到,再结合,及正弦函数的性质解答即可.【题目详解】(1)因为,所以(2)因为即因为,所以所以因为所以所以当时,.当时,(最大值)当时,在是增函数,在是减函数.的值域是.【答案点睛】本题主要考查了简单角的三角函数值的求解方法,两角和与差的正弦、余弦公式,三角函数的图象与性质等知识,考查了运算求解能力,属于中档题.18.(1)平行,证明见解析;(2).【答案解析】
(1)由题意及图形的翻折规律可知应是的一条中位线,利用线面平行的判定定理即可求证;(2)利用条件及线面垂直的判定定理可知,,则平面,在利用锥体的体积公式即可.【题目详解】(1)证明:因翻折后、、重合,∴应是的一条中位线,∴,∵平面,平面,∴平面;(2)解:∵,,∴面且,,,又,.【答案点睛】本题主要考查线面平行的判定定理,线面垂直的判定定理及锥体的体积公式,属于基础题.19.(1)见解析;(2)【答案解析】
(1)设,,由已知,得,代入中即可;(2)利用抛物线的定义将转化为,再利用韦达定理计算.【题目详解】(1)在抛物线上,∴,设,,由题可知,,∴,∴,∴,∴,∴(2)由(1)问可设::,则,,,∴,∴,即(*),将直线与抛物线联立,可得:,所以,代入(*)式,可得满足,∴:.【答案点睛】本题考查直线与抛物线的位置关系的应用,在处理直线与抛物线位置关系的问题时,通常要涉及韦达定理来求解,本题查学生的运算求解能力,是一道中档题.20.(1);(2)存在,【答案解析】
(1)把点代入椭圆C的方程,再结合离心率,可得a,b,c的关系,可得椭圆的方程;(2)设出直线的方程,代入椭圆,运用韦达定理可求得点的坐标,再由,可求得直线的方程,要注意检验直线是否和椭圆有两个交点.【题目详解】(1)由题可得∴,所以椭圆的方程(2)由题知,设,直线的斜率存在设为,则与椭圆联立得,,∴,,∴若以为直径的圆经过点,则,∴,化简得,∴,解得或因为与不重合,所以舍.所以直线的方程为.【答案点睛】本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,考查了向量的数量积的运用,属于中档题.21.(1)(2)直线恒过定点,详见解析【答案解析】
(1)依题意由椭圆的简单性质可求出,即得椭圆C的方程;(2)设直线的方程为:,联立直线的方程与椭圆方程可求得点的坐标,同理可求出点的坐标,根据的坐标可求出直线的方程,将其化简成点斜式,即可求出定点坐标.【题目详解】(1)由题有,.∴,∴.∴椭圆方程为.(2)设直线的方程为:,则∴或,∴,同理,当时,由有.∴,同理,又∴,当时,∴直线的方程为∴直线恒过定点,当时,此时也过定点..综上:直线恒过定点.【答案点睛】本题主要考查利用椭圆的简单性质求椭圆的标准方程,以及直线与椭圆的位置关系应用,定点问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年规划重点-煤炭开采扩建项目建议书(立项报告)
- 中国淋水填料项目创业投资方案
- 职业技能提升讲课流程
- 重症哮喘急救流程中的关键步骤
- 健康歌课件小班
- 高低压开关柜项目投资分析报告
- 一年级数学下册学习兴趣提升计划
- 医疗器械行业公司发展计划
- 物业管理服务满意度调查及整改措施
- 2025年班主任学期课程安排计划
- 4-6 《窦娥冤》《雷雨》《哈姆雷特》(说课稿)-2024-2025学年高一语文必修下册同步备课系列(说课稿+说课稿)(统编版2019)
- 电大《法理学》期末考试复习资料
- 50项护理技术操作流程及评分标准
- 2017年高考数学试卷(文)(北京)(空白卷)
- 2025年度安徽白帝集团限公司社会招聘高频重点提升(共500题)附带答案详解
- 公益招贴设计课件
- 数字化管理师复习测试卷附答案
- 文化节庆活动审批管理制度
- 2025年软件资格考试电子商务设计师(中级)(基础知识、应用技术)合卷试卷与参考答案
- 【MOOC】大学生健康教育与自卫防身-山东大学 中国大学慕课MOOC答案
- 北京工业大学耿丹学院《国际金融》2021-2022学年第一学期期末试卷
评论
0/150
提交评论