2023届百色市重点中学高考数学押题试卷(含答案解析)_第1页
2023届百色市重点中学高考数学押题试卷(含答案解析)_第2页
2023届百色市重点中学高考数学押题试卷(含答案解析)_第3页
2023届百色市重点中学高考数学押题试卷(含答案解析)_第4页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.由曲线围成的封闭图形的面积为()A. B. C. D.2.已知双曲线:的左右焦点分别为,,为双曲线上一点,为双曲线C渐近线上一点,,均位于第一象限,且,,则双曲线的离心率为()A. B. C. D.3.已知i为虚数单位,则()A. B. C. D.4.复数满足,则()A. B. C. D.5.已知数列为等差数列,为其前项和,,则()A.7 B.14 C.28 D.846.已知等差数列满足,公差,且成等比数列,则A.1 B.2 C.3 D.47.已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范围为()A. B. C. D.8.将函数的图像向左平移个单位得到函数的图像,则的最小值为()A. B. C. D.9.已知函数满足=1,则等于()A.- B. C.- D.10.已知整数满足,记点的坐标为,则点满足的概率为()A. B. C. D.11.函数的图象如图所示,为了得到的图象,可将的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位12.定义在R上的函数y=fx满足fx≤2x-1A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知单位向量的夹角为,则=_________.14.在中,角,,的对边长分别为,,,满足,,则的面积为__.15.已知函数的定义域为R,导函数为,若,且,则满足的x的取值范围为______.16.已知向量,若向量与共线,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,直线是曲线在处的切线.(1)求证:无论实数取何值,直线恒过定点,并求出该定点的坐标;(2)若直线经过点,试判断函数的零点个数并证明.18.(12分)如图,在三棱锥中,平面平面,,.点,,分别为线段,,的中点,点是线段的中点.(1)求证:平面.(2)判断与平面的位置关系,并证明.19.(12分)已知分别是内角的对边,满足(1)求内角的大小(2)已知,设点是外一点,且,求平面四边形面积的最大值.20.(12分)已知函数,,若存在实数使成立,求实数的取值范围.21.(12分)团购已成为时下商家和顾客均非常青睐的一种省钱、高校的消费方式,不少商家同时加入多家团购网.现恰有三个团购网站在市开展了团购业务,市某调查公司为调查这三家团购网站在本市的开展情况,从本市已加入了团购网站的商家中随机地抽取了50家进行调查,他们加入这三家团购网站的情况如下图所示.(1)从所调查的50家商家中任选两家,求他们加入团购网站的数量不相等的概率;(2)从所调查的50家商家中任取两家,用表示这两家商家参加的团购网站数量之差的绝对值,求随机变量的分布列和数学期望;(3)将频率视为概率,现从市随机抽取3家已加入团购网站的商家,记其中恰好加入了两个团购网站的商家数为,试求事件“”的概率.22.(10分)已知函数是自然对数的底数.(1)若,讨论的单调性;(2)若有两个极值点,求的取值范围,并证明:.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【答案解析】

先计算出两个图像的交点分别为,再利用定积分算两个图形围成的面积.【题目详解】封闭图形的面积为.选A.【答案点睛】本题考察定积分的应用,属于基础题.解题时注意积分区间和被积函数的选取.2.D【答案解析】由双曲线的方程的左右焦点分别为,为双曲线上的一点,为双曲线的渐近线上的一点,且都位于第一象限,且,可知为的三等分点,且,点在直线上,并且,则,,设,则,解得,即,代入双曲线的方程可得,解得,故选D.点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).3.A【答案解析】

根据复数乘除运算法则,即可求解.【题目详解】.故选:A.【答案点睛】本题考查复数代数运算,属于基础题题.4.C【答案解析】

利用复数模与除法运算即可得到结果.【题目详解】解:,故选:C【答案点睛】本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题.5.D【答案解析】

利用等差数列的通项公式,可求解得到,利用求和公式和等差中项的性质,即得解【题目详解】,解得..故选:D【答案点睛】本题考查了等差数列的通项公式、求和公式和等差中项,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.6.D【答案解析】

先用公差表示出,结合等比数列求出.【题目详解】,因为成等比数列,所以,解得.【答案点睛】本题主要考查等差数列的通项公式.属于简单题,化归基本量,寻求等量关系是求解的关键.7.D【答案解析】

讨论,,三种情况,求导得到单调区间,画出函数图像,根据图像得到答案.【题目详解】当时,,故,函数在上单调递增,在上单调递减,且;当时,;当时,,,函数单调递减;如图所示画出函数图像,则,故.故选:.【答案点睛】本题考查了利用导数求函数的零点问题,意在考查学生的计算能力和应用能力.8.B【答案解析】

根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可.【题目详解】将函数的图象向左平移个单位,得到,此时与函数的图象重合,则,即,,当时,取得最小值为,故选:.【答案点睛】本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键.9.C【答案解析】

设的最小正周期为,可得,则,再根据得,又,则可求出,进而可得.【题目详解】解:设的最小正周期为,因为,所以,所以,所以,又,所以当时,,,因为,整理得,因为,,,则所以.故选:C.【答案点睛】本题考查三角形函数的周期性和对称性,考查学生分析能力和计算能力,是一道难度较大的题目.10.D【答案解析】

列出所有圆内的整数点共有37个,满足条件的有7个,相除得到概率.【题目详解】因为是整数,所以所有满足条件的点是位于圆(含边界)内的整数点,满足条件的整数点有共37个,满足的整数点有7个,则所求概率为.故选:.【答案点睛】本题考查了古典概率的计算,意在考查学生的应用能力.11.C【答案解析】

根据正弦型函数的图象得到,结合图像变换知识得到答案.【题目详解】由图象知:,∴.又时函数值最大,所以.又,∴,从而,,只需将的图象向左平移个单位即可得到的图象,故选C.【答案点睛】已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求,一般用最高点或最低点求.12.D【答案解析】

根据y=fx+1为奇函数,得到函数关于1,0中心对称,排除AB,计算f1.5≤【题目详解】y=fx+1为奇函数,即fx+1=-f-x+1,函数关于f1.5≤2故选:D.【答案点睛】本题考查了函数图像的识别,确定函数关于1,0中心对称是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】

因为单位向量的夹角为,所以,所以==.14..【答案解析】

由二次方程有解的条件,结合辅助角公式和正弦函数的值域可求,进而可求,然后结合余弦定理可求,代入,计算可得所求.【题目详解】解:把看成关于的二次方程,则,即,即为,化为,而,则,由于,可得,可得,即,代入方程可得,,,由余弦定理可得,,解得:(负的舍去),.故答案为.【答案点睛】本题主要考查一元二次方程的根的存在条件及辅助角公式及余弦定理和三角形的面积公式的应用,属于中档题.15.【答案解析】

构造函数,再根据条件确定为奇函数且在上单调递减,最后利用单调性以及奇偶性化简不等式,解得结果.【题目详解】依题意,,令,则,故函数为奇函数,故函数在上单调递减,则,即,故,则x的取值范围为.故答案为:【答案点睛】本题考查函数奇偶性、单调性以及利用函数性质解不等式,考查综合分析求解能力,属中档题.16.【答案解析】

计算得到,根据向量平行计算得到答案.【题目详解】由题意可得,因为与共线,所以有,即,解得.故答案为:.【答案点睛】本题考查了根据向量平行求参数,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析,(2)函数存在唯一零点.【答案解析】

(1)首先求出导函数,利用导数的几何意义求出处的切线斜率,利用点斜式即可求出切线方程,根据方程即可求出定点.(2)由(1)求出函数,令方程可转化为记,利用导数判断函数在上单调递增,根据,由零点存在性定理即可求出零点个数.【题目详解】所以直线方程为即,恒过点将代入直线方程,得考虑方程即,等价于记,则于是函数在上单调递增,又所以函数在区间上存在唯一零点,即函数存在唯一零点.【答案点睛】本题考查了导数的几何意义、直线过定点、利用导数研究函数的单调性、零点存在性定理,属于难题.18.(1)见解析(2)平面.见解析【答案解析】

(1)要证平面,只需证明,,即可求得答案;(2)连接交于点,连接,根据已知条件求证,即可判断与平面的位置关系,进而求得答案.【题目详解】(1),为边的中点,,平面平面,平面平面,平面,平面,,在内,,为所在边的中点,,又,,平面.(2)判断可知,平面,证明如下:连接交于点,连接.、、分别为边、、的中点,.又是的重心,,,平面,平面,平面.【答案点睛】本题主要考查了求证线面垂直和线面平行,解题关键是掌握线面垂直判定定理和线面平行判断定理,考查了分析能力和空间想象能力,属于中档题.19.(1)(2)【答案解析】

(1)首先利用诱导公式及两角和的余弦公式得到,再由同角三角三角的基本关系得到,即可求出角;(2)由(1)知,是正三角形,设,由余弦定理可得:,则,得到,再利用辅助角公式化简,最后由正弦函数的性质求得最大值;【题目详解】解:(1)由,,,,,,,;(2)由(1)知,是正三角形,设,由余弦定理得:,,,所以当时有最大值【答案点睛】本题考查同角三角函数的基本关系,三角恒等变换公式的应用,三角形面积公式的应用,以及正弦函数的性质,属于中档题.20.【答案解析】试题分析:先将问题“存在实数使成立”转化为“求函数的最大值”,再借助柯西不等式求出的最大值即可获解.试题解析:存在实数使成立,等价于的最大值大于,因为,由柯西不等式:,所以,当且仅当时取“”,故常数的取值范围是.考点:柯西不等式即运用和转化与化归的数学思想的运用.21.(1);(2)从而的分布列为012;(3).【答案解析】

(1)运用概率的计算公式求概率分布,再运用数学期望公式进行求解;(2)借助题设条件运用贝努力公式进行分析求解:(1)记所选取额两家商家加入团购网站的数量相等为事件,则,所以他们加入团购网站的数量不相等的概率为.(2)由题,知的可能取值分别为0,1,2,,,从而的分布列为012.(3)所调查的50家商家中加入了两个团购网站的商家有25家,将频率视为概率,则从市中任取一家加入团购网站的商家,他同时加入了两个团购网站的概率为,所以,所以事件“”的概率为.22.(1)减区间是,增区间是;(2),证明见解析.【答案解析】

(1)当时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论