




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平行四边形的性质定理:平行四边形的对边相等.′驶向胜利的彼岸证明后的结论,以后可以直接运用.
BDCA∵四边形ABCD是平行四边形.∴AB=CD,BC=DA.定理:平行四边形的对角相等.∵四边形ABCD是平行四边形.∴∠A=∠C,∠B=∠D.定理:平行四边形的对角线互相平分.∵四边形ABCD是平行四边形.∴CO=AO,BO=DO.BDCAO定理:夹在两条平等线间的平等线段相等.∵MN∥PQ,AB∥CD,∴AB=CD.BDCAMNPQ回顾思考平行四边形的判定′驶向胜利的彼岸定理:两组对边分别相等的四边形是平行四边形.定理:一组对边平行且相等的四边形是平行四边形.定理:对角线互相平分的四边形是平行四边形.定理:两组对角分别相等的四边形是平行四边形的.回顾思考∵AB=CD,AD=BC,∴四边形ABCD是平行四边形.BDCABDCAO∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形.∵AO=CO,BO=DO,∴四边形ABCD是平行四边形.∵∠A=∠C,∠B=∠D.∴四边形ABCD是平行四边形.等腰梯形的性质定理:等腰梯形同一底上的两个角相等.定理:等腰梯形的两条对角线相等.在梯形ABCD中,AD∥BC,∵AB=DC,∴AC=DB..在梯形ABCD中,AD∥BC,∵AB=DC,∴∠A=∠D,∠B=∠C.BDCABDCA证明后的结论,以后可以直接运用.
回顾思考三角形中位线的性质′驶向胜利的彼岸定理:三角形的中位线平行于第三边,且等于第三边的一半.这个定理提供了证明线段平行,和线段成倍分关系的根据.模型:连接任意四边形各边中点所成的四边形是平行四边形.要重视这个模型的证明过程反映出来的规律:对角线的关系是关键.改变四边形的形状后,对角线具有的关系(对角线相等,对角线垂直,对角线相等且垂直)决定了各中点所成四边形的形状.回顾思考∵DE是△ABC的中位,DEBCA∴DE∥BC,ABCHDEFG驶向胜利的彼岸四边形之间的关系四边形之间有何关系?特殊的平行四边形之间呢?还记得它们与平行四边形的关系吗?能用一张图来表示它们之间的关系吗?四边形平行四边形矩形菱形正方形两组对边分别平行有一个角是直角有一组邻边相等有一个角是直角有一组邻边相等一组对边平行另一组对边不平行梯形两腰相等等腰梯形腰与底垂直直角梯形回顾思考矩形的性质,推论驶向胜利的彼岸定理:矩形的四个角都是直角.定理:矩形的两条对角线相等.推论(直角三角形性质):直角三角形斜边上的中线等于斜边的一半.回顾思考∵四边形ABCD是矩形,∴∠A=∠B=∠C=∠D=900.DBCADBCA∵AC,BD是矩形ABCD的两条对角线.∴AC=BD.在△ABC中,∠ACB=900,∵AD=BD,ABCD矩形的判定,直角三角形的判定驶向胜利的彼岸定理:有三个角是直角的四边形是矩形.定理:对角线相等的平行四边形是矩形.定理:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.回顾思考∵∠A=∠B=∠C=900,∴四边形ABCD是矩形.DBCADBCA∵AC,BD是□ABCD的两条对角线,且AC=DB.∴四边形ABCD是矩形.ABCD∴∠ACB=900.在△ABC中,∵AD=BD,菱形的判定驶向胜利的彼岸定理:四条边都相等的四边形是菱形.定理:对角线互相垂直的平行四边形是菱形.回顾思考在四边形ABCD中,∵AB=BC=CD=AD,∴四边形ABCD是菱形.∵AC,BD是□ABCD的两条对角线,AC⊥BD.∴四边形ABCD是菱形.CBDADBCAO正方形的判定驶向胜利的彼岸定理:有一个角是直角的菱形是正方形.定理:对角线相等的菱形是正方形.定理:对角线互相垂直的矩形是正方形.回顾思考∵四边形ABCD是菱形,∠A=900,∴四边形ABCD是正方形.∵四边形ABCD是菱形,AC=DB.∴四边形ABCD是正方形.∴四边形ABCD是正方形.ABCDABCDO∵四边形ABCD是矩形,AC⊥BD,图形之间的内在联系驶向胜利的彼岸
我思,我进步2依次连接菱形各边中点所成的四边形是一个怎样的图形呢?先猜一猜,再证明.依次连接矩形各边中点所成的四边形是一个怎样的图形呢?先猜一猜,再证明.ABCHDEFGDBCADEFG图形之间的内在联系驶向胜利的彼岸我思,我进步3依次连接平行四边形各边中点所成的四边形是一个怎样的图形呢?先猜一猜,再证明.依次连接梯形各边中点所成的四边形是一个怎样的图形呢?先猜一猜,再证明.ABCHDEFGABCHDEFG图形之间的内在联系依次连接等腰梯形各边中点所成的四边形是一个怎样的图形呢?先猜一猜,再证明.驶向胜利的彼岸
我思,我进步4依次连接对角线相等的四边形各边中点所成的四边形是一个怎样的图形呢?先猜一猜,再证明.ABCHDEFGABCHDEFG图形之间的内在联系依次连接对角线垂直的四边形各边中点所成的四边形是一个怎样的图形呢?先猜一猜,再证明.驶向胜利的彼岸
我思,我进步5依次连接对角线相等且垂直的四边形各边中点所成的四边形是一个怎样的图形呢?先猜一猜,再证明.ABCHDEFGDBCAGEFG想一想,做一做驶向胜利的彼岸
我思,我进步6在右图中,ABCDXA表示一条环行高速公路,X表示一座水库,B,C表示两个大市镇.已知ABCD是一个正方形,XAD表示是一个等边三角形.假如政府要铺设两条输
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC TR 63491:2025 EN Live working – Guidance for end users for the selection of personal protective equipment against the hazards of an electric arc
- 2025至2030中国白酒零售行业发展研究与产业战略规划分析评估报告
- 2025至2030中国男女风衣行业市场发展现状及发展前景与投融资战略报告
- 2025至2030中国电泳漆行业产业运行态势及投资规划深度研究报告
- 2025至2030中国电子产品的卷对卷印刷行业产业运行态势及投资规划深度研究报告
- 2025至2030中国生态纺织纤维行业产业运行态势及投资规划深度研究报告
- 2025至2030中国瓷砖黏贴剂行业发展研究与产业战略规划分析评估报告
- 2025至2030中国现场护理CT成像系统行业市场深度研究及发展前景投资可行性分析报告
- 智能组网培训课件图片
- 创新驱动教育建筑电气设备升级的必由之路
- 民宿义工劳务合同协议
- 银行保密知识培训课件
- 2025年铁路货装值班员(高级)职业技能鉴定参考试题库(含答案)
- PICC导管相关性血栓预防与护理
- 中心静脉压的试题及答案
- 破碎安全培训
- 2025年国家人民卫生出版社有限公司招聘笔试参考题库含答案解析
- 护理不良事件报告制度、激励机制及上报流程
- 北师大版4四年级下册数学期末复习试卷(5套)
- T-CEEMA 0203-2024 风力发电机组状态检修导则
- TCUWA40055-2023排水管道工程自密实回填材料应用技术规程
评论
0/150
提交评论