




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
网络综合基础(jīchǔ)第一页,共28页。§6-1复频率与复平面(píngmiàn)北京邮电大学电子(diànzǐ)工程学院俎云霄
第二页,共28页。傅立叶变换(biànhuàn)对拉普拉斯变换(biànhuàn)对
复频率
将正频率(pínlǜ)推广到负频率(pínlǜ)将实频率推广到复频率
——复频率通过拉普拉斯变换将电路的微分方程转换为代数方程,便于求解。第三页,共28页。用来标记复频率s的复数平面(píngmiàn)就称为复平面(píngmiàn)或s平面(píngmiàn)。
复平面(píngmiàn)第四页,共28页。试判断是否为严格霍氏多项式。1网络函数是s的是系数(xìshù)有理函数3网络函数的的极点(jídiǎn)与网络稳定性的关系拉普拉斯变换(biànhuàn)对(a)当s为实数(shìshù)时,也F(s)为实数(shìshù);展开成连分式时,所得各商数项都为正。稳定网络的H(s)应具有如下形式:复平面(píngmiàn)线性、集总、非时变网络稳定时,其网络函数应具有如下性质:(2)当时,网络函数的定义(dìngyì)和分类所以,全通网络可作为相移或时延网络。如果(rúguǒ)某些根的实部为负,某些根的实部为零,则是广义霍氏多项式;1正实函数(hánshù)的倒数也是正实函数(hánshù)如果函数F(s)满足:(1)当s为实数(shìshù)时,F(s)也为实数(shìshù);§6-2网络函数及其性质(xìngzhì)北京邮电大学电子(diànzǐ)工程学院俎云霄
第五页,共28页。在单一激励的线性非时变电路(diànlù)中,网络函数定义为零初始状态下,响应的拉普拉斯变换与激励的拉普拉斯变换之比,并用符号H表示。设激励(jīlì)e(t)的拉普拉斯变换为E(s),响应r(t)的拉普拉斯变换为R(s),则网络函数为
网络函数的定义(dìngyì)和分类第六页,共28页。
激励响应激励与响应的位置关系网络函数类型电流源电压激励与响应在同一端口驱动点阻抗(函数)Z(s)电压源电流激励与响应在同一端口驱动点导纳(函数)Y(s)电流源电压激励与响应不在同一端口转移阻抗(函数)电压源电压激励与响应不在同一端口转移电压比(函数)电流源电流激励与响应不在同一端口转移电流比(函数)电压源电流激励与响应不在同一端口转移导纳(函数)网络函数的定义(dìngyì)和分类驱动点函数实质上是描述单口网络外部特性(tèxìng)的量,而转移函数则是描述双口网络传输特性(tèxìng)的量。第七页,共28页。网络函数的性质(xìngzhì)1网络函数是s的是系数(xìshù)有理函数N(s)和D(s)分别为分子多项式和分母多项式,、均为实数。(线性、集总、非时变(shíbiàn)网络)2网络函数的零点和极点对轴对称——零点——极点标示了网络函数零、极点位置的s平面称为网络函数的零、极点图。通常用“º”表示零点,用“”表示极点。第八页,共28页。网络函数的性质(xìngzhì)3网络函数的的极点(jídiǎn)与网络稳定性的关系稳定网络是指当网络加上冲激后,其响应(xiǎngyìng)是有界的,而不是无限大。无源网络是稳定网络。若冲激响应是有界的,则网络就是稳定的,否则就是不稳定的。稳定网络的H(s)应具有如下形式:、、均为非负实数分子多项式的幂次最多比分母多项式的幂次高一次。第九页,共28页。网络函数的性质(xìngzhì)第十页,共28页。右半开平面(píngmiàn):不包含纵轴的右半平面(píngmiàn)。网络函数的性质(xìngzhì)严格(yángé)霍氏多项式:根只在s左半开平面的实系数多项式。霍氏多项式:根不在s右半开平面,且无重根的实系数多项式叫做霍尔维茨(Hurwitz)多项式,简称霍氏多项式。广义霍氏多项式:根不在s右半开平面,但具有轴单根的实系数多项式。线性、集总、非时变网络稳定时,其网络函数应具有如下性质:(1)必须是s的实系数有理函数。(2)分母多项式必须是霍氏多项式。(3)分子多项式的幂次最多比分母多项式高一次。第十一页,共28页。如果网络函数的极点全在左半平面,零点全在右半平面,且零点和极点对虚轴对称,则称这样的函数为全通函数,其所对应(duìyìng)的网络称为全通网络。如果网络(wǎngluò)函数的零点只在左半平面,则称其为最小相移函数,否则称为非最小相移函数。其所对应的网络(wǎngluò)分别称为最小相移网络(wǎngluò)和非最小相移网络(wǎngluò)。
全通网络、最小相移网络和非最小相移网络
全通函数的幅频特性,所以,全通网络可作为相移或时延网络。一个(yīɡè)非最小相移函数总可以表示为最小相移函数与全通函数的乘积。第十二页,共28页。
全通网络、最小相移网络和非最小相移网络
H(s)只具有左半平面(píngmiàn)的零、极点。H2(s)只具有左半平面(píngmiàn)的零、极点,是最小相移网络。全通函数(hánshù)第十三页,共28页。§6-3霍尔维茨多项式
北京邮电大学电子(diànzǐ)工程学院俎云霄
第十四页,共28页。n阶霍氏多项式可写为如下(rúxià)一般形式:(1)严格霍氏多项式的最高幂次项与最低幂次项之间不能有缺项,且系数(xìshù)为正。(必要条件)
霍尔维茨多项式的性质(xìngzhì)(2)广义霍氏多项式可以缺常数项、奇次项或偶次项。(3)将严格霍氏多项式分解为偶部和奇部之和,即则偶部与奇部之比,或奇部与偶部之比展开成连分式时,所得各商数项都为正。即
第十五页,共28页。
因为所有商数均为正数,所以(suǒyǐ)P(s)是一个严格霍氏多项式。试判断是否为严格霍氏多项式。霍尔维茨多项式的检验(jiǎnyàn)解例5-2P(s)的偶部和奇部分(bùfen)别为
利用辗转相除法可得
第十六页,共28页。检验多项式是否为霍氏多项式最直接的方法是求出多项式的根。如果(rúguǒ)各个根的实部均为负值,则该多项式一定是严格霍氏多项式;如果(rúguǒ)某些根的实部为负,某些根的实部为零,则是广义霍氏多项式;否则就不是霍氏多项式。当M(s)和N(s)有公因式时,会使相除的次数减少,则一定不是严格(yángé)霍氏多项式,但是否为广义霍氏多项式,需要进一步分析公因式的根。如果根全为纯虚数,即在虚轴上,则是广义霍氏多项式,否则就不是霍氏多项式。霍尔维茨多项式的检验(jiǎnyàn)第十七页,共28页。§6-4无源性和正实函数(hánshù)北京邮电大学电子(diànzǐ)工程学院俎云霄
第十八页,共28页。由R、L、C、M等无源元件组成的网络,其驱动点函数是有理正实函数,这是无源单口网络可以实现的充分(chōngfèn)必要条件,是无源网络综合的基础。
如果F(s)又是有理函数(yǒulǐhánshù),则称其为有理正实函数。如果函数F(s)满足:(1)当s为实数(shìshù)时,F(s)也为实数(shìshù);(2)当时,则就称其为正实函数,简记为P.r.。第十九页,共28页。无源网络驱动(qūdònɡ)点函数的正实性质是有理正实函数。第二十页,共28页。正实函数(hánshù)的性质1正实函数(hánshù)的倒数也是正实函数(hánshù)证明(zhèngmíng)假定F(s)是正实函数,则它必满足条件(1)和(2)。因此(1)当s为实数时,因为F(s)为实数,所以,其倒数也为实数,即满足条件(1)。(2)设,则有因为当时有,所以由上式可知,即满足条件(2),性质得证。第二十一页,共28页。2正实函数(hánshù)之和仍为正实函数(hánshù)正实函数(hánshù)的性质3正实函数(hánshù)的复合函数(hánshù)仍为正实函数(hánshù)设F(s)和f(s)都是正实函数,则其复合函数F[f(s)]也是正实函数。证明
当s为实数时,f(s)为实数,所以,F[f(s)]也为实数,满足条件(1)。
当时,,从而,满足条件(2)。所以,复合函数是正实函数。第二十二页,共28页。正实函数(hánshù)条件的等价条件(a)当s为实数(shìshù)时,也F(s)为实数(shìshù);(b),即在虚轴上F(s)的实部大于等于零;
(c)F(s)在s的右半平面(píngmiàn)内解析,即:(i)极点不能在s的右半开平面(píngmiàn),(ii)若虚轴上有极点,则这些极点应为单阶且其留数为正实数。第二十三页,共28页。正实函数(hánshù)的检验条件(tiáojiàn)(b):先将分子、分母多项式的奇部和偶部分开,如果、为负,则一定不符合条件(b),因此,不需再进一步检验。而如果P(x)中的所有系数均为正,则P(x)必然非负,F(x)符合条件(b)。如果除、为正外,其他某些系数为负,则必须要求P(x)在除原点外的正x轴上不能有奇数个根才能保证对所有都有。偶数个根和复数根是允许的。
第二十四页,共28页。条件(c):先看s的右半平面是否有极点,这可以(kěyǐ)通过检查有理函数的分母多项式是否是霍氏多项式来判断;其次看虚轴极点是否单阶且有正留数,这可将有理函数展开成部分分式后加以确定。正实函数(hánshù)的检验第二十五页,共28页。
三个极点的留数都是正实数,所以条件(c)满足(mǎnzú)。因此F(s)是正实函数。正实函数(hánshù)的检验解例5-5条件(tiáojiàn)(a)显然满足。检验是否是正实函数。由于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陀螺果育苗技术规程
- 2025年南昌县公安局招聘警务辅助人员考试笔试试题【答案】
- 2025年超铀元素及其提取设备合作协议书
- 河南大学科技成果转化基金项目申请书
- 项目策划编制指南
- 大学生寒假.实践报告(卖春联)
- 2025产科护士个人工作计划
- 2025年医用超声诊断设备项目发展计划
- 2025年太阳能电池背膜项目发展计划
- 工作坊聚焦教育技术与教学质量的双重提升
- 2024年安徽省合肥市北城片区七年级数学第一学期期末学业水平测试试题含解析
- 2025至2030中国铜冶炼行业发展现状及应用需求现状分析报告
- 农业保险培训课件
- 茶园租赁合同(含茶叶加工销售)
- 2025至2030全球及中国浮式液化天然气行业产业运行态势及投资规划深度研究报告
- 药品连锁总部管理制度
- 2025至2030中国家用清洁工具行业发展趋势分析与未来投资战略咨询研究报告
- 20250617国金证券机器人行业研究垂直领域具身智能机器人的野望416mb
- 数字时代亲属关系重构-洞察及研究
- 管理类本科论文
- 招商人员笔试题目及答案
评论
0/150
提交评论