疏水材料的原理及应用_第1页
疏水材料的原理及应用_第2页
疏水材料的原理及应用_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

疏水材料的原理及应用刖言尽管人们很早就知道荷叶表面“自清洁”效应,但是一直无法了解荷叶表面的秘密。直到20世纪90年代,德国的两个科学家首先用扫描电子显微镜观察了荷叶表面的微观结构,认为“自清洁”效应是由荷叶表面上的微米级乳突以及表面蜡状物共同引起的。其后江雷等人对荷叶表面微米结构进行深入分析,发现荷叶表面乳突上还存在纳米结构,这种微米与纳米结构同时存在的二元结构才是引起荷叶表面“自清洁”的根本原因。这样的“粗糙”表面产生的对水的不浸润性被称为疏水性。疏水与超疏水在化学里,疏水性指的是一个分子(疏水物)与水互相排斥的物理性质。疏水性分子偏向于非极性,并因此较会溶解在中性和非极性溶液(如有机溶剂)。疏水性分子在水里通常会聚成一团,而水在疏水性溶液的表面时则会形成一个很大的接触角而成水滴状。疏水性通常也可以称为亲脂性,例如疏水性分子包含有烷烃、油、脂肪和多数含有油脂的物质,但这两个词并不全然是同义的。即使大多数的疏水物通常也是亲脂性的,但还是有例外,如硅橡胶和碳氟化合物。对于一个疏水性的固体表面来说,当表面有微小突起的时候,有一些空气会被“关到”水与固体表面之间,导致水珠大部分与空气接触,与固体直接接触面积反而大大减小。由于水的表面张力作用使水滴在这种粗糙表面的形状接近于球形,其接触角可达150度以上,并且水珠可以很自由地在表面滚动。这种接触角大于150度的表面就被称为“超疏水表面”,而一般疏水表面的接触角仅大于90度。疏水原理根据热力学的理论,物质会寻求存>匕、在于最低能量的状态。水是极性物质,_J并因此可以在内部形成氢键,这使得它有许多独别的性质。而疏水物不是电子/七,可极化性的,它无法和水形成氢键,所■*A以水会对疏水物产生排斥,以减少化学能。而水分子间形成氢键。因此两个不相溶的相态,将会变化成使其界面的面积最小时的状态。此效应可以在相分离的现象中被观察到。气体环绕的固体表面的液滴。接触角。c,是由液体在三相(液体、固体、气体)交点处的夹角。材料的浸润性是由表面的化学组成和微观几何结构共同决定的,通常以接触角。表征液体对固体的浸润程度。

1805年,托马斯•杨通过分析作用在由气体环绕的固体表面的液滴的力而确定了接触角。。气体环绕的固体表面的液滴,形成接触角Oc。如上图。二-'"5璀—:=固体和气体之间的表面张力=固体和液体之间的表面张力「.s'=液体和气体之间的表面张力。可以用接触角测量计来测量。由于Young方程仅适用于理想中的光滑固体表面,Wenzel和Cassie对粗糙表面的浸润性进行了研究,并分别各自提出理论如果液体与固体表面微结构的凹凸面直接接触,则此液滴处于Wenzel状态;而如果液体只是与微结构的凸面接触,则此液滴处于Cassie-Baxter状态。Wenzel发现粗糙表面的存在,使得实际上固液相的接触面要大于表观几何上观察到的面积,从而对亲(疏)水性产生了增强的作用。当液体直接接触微结构化的表面时,。角会转变为Uil'Wenzelcos知*=rcos^其中,r为实际面积与投影面积的比率。WenzelWenzel的方程显示了微结构化一个表面将会放大表面张力。疏水性表面(具有大于90°的接触角)在微结构化之后会变得更加疏水,其新的接触角将比原来增大。然而,一个亲水性表面(具有小于90°的接触角)在微结构化之后却会变得更加亲水,其新的接触角将比原来减小。Cassie和Baxter发现如果液体悬浮在微结构表面,。角将会变为"―::'。提出气垫模型(由空气和固体组成的固体界面)=6(cosO+1)-1其中,6为固体与液体接触面积的比例。在Cassie-Baxter状态下的液体比Wenzel状态下更具有运动性。通过用以上两个方程计算出的新接触角,我们可以预测Wenzel状态或Cassie-Baxter状态应该存在。由于有自由能最小化的限制,预测出具有更小的新接触角的状态就会更可能存在。从数学上来说,要使Cassie-Baxter状态存在,以下的不等式必须成立。cos。<(6-1)/(r-^)最近提出的一个判断Cassie-Baxter状态是否存在的替代标准是:1)接触线力克服液滴未被支撑部分的重力;2)微结构足够高从而阻止液滴接触微结构的基底(即凹面)。接触角是静态测量疏水性的方法,接触角滞后和滑动角则对疏水性的动态测量法。接触角滞后是一种鉴定表面异质性的现象。当移液器将液体注到固体表面时,液体就会形成一定的接触角。随着注入液体的增加,液滴的体积会随之增加,接触角也会变大,但三相边界会保持固定直到液体突然溢出。在液体溢出前瞬间的接触角被称为前进接触角。回退接触角可以通过将液体从液滴中吸出来测量。随着液体被吸出,液滴的体积减小,接触角也减小,但三相边界同样保持固定直到被完全吸回。在液体被吸回瞬间的接触角被称为回退接触角。而前进接触角和回退接触角之间的差异就是接触角滞后,它被用来鉴定表面的异质性、粗糙性和运动性。非同质的表面会有能够阻碍接触线的区域。滑动角是另一种动态测量疏水性的方法:在固体表面放置一个液点,倾斜表面知道液滴开始滑动,此时的倾斜角即为滑动角。处于Cassie-Baxter状态的液滴通常会表现出比Wenzel状态更小的滑动角和接触角滞后。疏水材料的应用许多在自然界中找到的超疏水性物质都遵循Cassie定律,而它在次微米尺度下可以和空气组成双相物质。荷叶的“自清洁”效应便是基于此原理而形成的。超疏水表面的应用超疏水表面在工农业生产和人们的日常生活中都有着极其广阔的应用前景。荷叶的“自清洁”功能启发了人们将超疏水表面应用到日常的自清洁技术中。例如:它可以用来防雪、防污染、抗氧化以及防止电流传导等。如果建筑物的外墙、露天的广告牌等表面像荷叶一样,就可以保持清洁。超疏水表面在减阻中的应用船只等在水面航行时需要消耗很多的能源来克服行进中的摩擦阻力,对于水下航行体如潜艇等甚至可达到80%;而对于运输管道如输油(水)管道,其能量几乎全部被用来克服流固表面的摩擦阻力。随着微机电的发展,机构尺度越来越小,固液界面中的摩擦力相对越来越大,如微通道

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论