




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
..2019-2014学年新人教版八年级〔上期末数学检测卷2一、选择题〔每小题3分,共24分1.〔3分下列图案中不是轴对称图形的是〔A.B.C.D.2.〔3分下列运算结果正确的是〔A.a3•a4=a12B.〔a23=a6C.〔3a3=3a3D.a〔a+1=a2+13.〔3分下列说法中:①三条线段组成的图形叫做三角形;②三角形的角平分线是射线;③三角形的三条高所在的直线相交于一点,这一点不在三角形的内部,就在三角形的外部;④三角形的三条中线相交于一点,且这点一定在三角形的内部.其中正确的有〔A.4个B.3个C.2个D.1个4.〔3分下列说法不正确的是〔A.在锐角三角形中,最大的锐角x的取值范围是60°≤x<90°B.在△ABC中,锐角的个数最多C.在△ABC中三个内角α:β:γ=1:3:5,这个三角形是直角三角形D.一个三角形中至多有一个角是锐角5.〔3分下列条件中,能判定△ABC≌△DEF的是〔A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.∠B=∠E,∠A=∠D,AC=EFD.∠B=∠E,∠A=∠D,AB=DE6.〔3分下列分解因式正确的是〔A.m3﹣m=m〔m﹣1〔m+1B.x2﹣x﹣6=x〔x﹣1﹣6C.2a2+ab+a=a〔2a+bD.x2﹣y2=〔x﹣y27.〔3分对于分式,当x=﹣时,下列说法中:①分式值一定为0;②分式一定有意义;③当a=﹣时,分式无意义.其中正确的个数有〔A.3个B.2个C.1个D.0个8.〔3分〔2011•XX如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF,上述结论中正确的个数是〔A.1个B.2个C.3个D.4个二、填空题〔每小题3分,共24分9.〔3分〔2019•XX一模已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为_________.10.〔3分化简:〔a2b﹣2〔a﹣1b﹣2﹣3=_________.11.〔3分〔2019•青羊区一模如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为_________.12.〔3分如图,在△ABC中,AB=AC,∠B=30°,AB的垂直平分线EF交AB于点E,交BC于点F,EF=2,则BC的长为_________.13.〔3分如果〔a+b2=19,a2+b2=14,则〔a﹣b2=_________.14.〔3分如图,在△ABC中,AB=a,AC=b,∠BAC=150°,则S△ABC=_________.15.〔3分〔2019•海门市二模如图,在△ABC中,AD为BC边上的中线.已知AC=5,AD=4,则AB的取值范围是_________.16.〔3分〔2011•襄阳关于x的分式方程的解为正数,则m的取值范围是_________.三、解答题〔其中17,18题各9分,19,21,22,24,26题各10分,20题12分,23题8分,25题14分,共102分17.〔9分已知2x+y=4,求代数式[〔x+y2﹣〔x﹣y2﹣2y〔x﹣y]÷4y的值.18.〔9分〔1计算:÷〔a﹣.〔2解方程:+=.19.〔10分〔2019•XX有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.〔保留作图痕迹,不要求写出画法20.〔12分如图,在△ABC中,AB=AC,点D、E、F分别在边AB、BC、AC上,且BD=CE,∠DEF=∠B.图中是否存在和△BDE全等的三角形?说明理由.21.〔10分〔2011•XX甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.〔1问乙单独整理多少分钟完工?〔2若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?22.〔10分〔2011•日照如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.〔1求证:DE平分∠BDC;〔2若点M在DE上,且DC=DM,求证:ME=BD.23.〔8分某种产品的原料降价,因而厂家决定对产品进行降价.现有两种方案:方案1:第一次降价p%,第二次降价q%.方案2:第一、二次降价均为%.其中p,q是不相等且使此情境有意义的正数,两种方案哪种降价最多?24.〔10分一块原边长分别为a,b〔a>1,b>1的长方形,一边增加1,另一边减少1.〔1当a=b时,变化后的面积是增加还是减少?〔2当a>b时,有两种方案,第一种方案如图1,第二种方案如图2.请你比较这两种方案,确定哪一种方案变化后的面积比较大.25.〔14分〔2019•XX如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN〔1如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.〔2如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.26.〔10分在△ABC中,∠A=90°,点D在线段BC上,∠EDB=∠C,BE⊥DE,垂足为点E,DE与AB相交于点F.当AB=AC时〔如图所示.〔1∠EBF=_________.〔2探究线段BE与FD的数量关系,并加以证明.2019-2014学年新人教版八年级〔上期末数学检测卷2参考答案与试题解析一、选择题〔每小题3分,共24分1.〔3分下列图案中不是轴对称图形的是〔A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选C.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.〔3分下列运算结果正确的是〔A.a3•a4=a12B.〔a23=a6C.〔3a3=3a3D.a〔a+1=a2+1考点:单项式乘多项式;同底数幂的乘法;幂的乘方与积的乘方.分析:同底数幂的乘法、幂的乘方、积的乘方,单项式乘多项式的法则分别进行计算即可.解答:解:A、a3•a4=a7,故本选项错误;B、〔a23=a6,故本选项正确;C、〔3a3=27a3,故本选项错误;D、a〔a+1=a2+a,故本选项错误;故选B.点评:此题考查了同底数幂的乘法、幂的乘方、积的乘方,单项式乘多项式,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.3.〔3分下列说法中:①三条线段组成的图形叫做三角形;②三角形的角平分线是射线;③三角形的三条高所在的直线相交于一点,这一点不在三角形的内部,就在三角形的外部;④三角形的三条中线相交于一点,且这点一定在三角形的内部.其中正确的有〔A.4个B.3个C.2个D.1个考点:三角形的角平分线、中线和高.分析:根据三角形的定义,三角形的角平分线、高线、中线对各选项分析判断后利用排除法求解.解答:解:①应为三条线段首尾顺次相接组成的图形叫做三角形,故本小题错误;②三角形的角平分线是线段,故本小题错误;③三角形的三条高所在的直线相交于一点,这一点不在三角形的内部,就在三角形的外部,也有可能是直角三角形的直角顶点,故本小题错误;④三角形的三条中线相交于一点,且这点一定在三角形的内部正确,综上所述,正确的有④共1个.故选D.点评:本题考查了三角形的定义,以及三角形的角平分线、高线、中线,是基础题,需熟记.4.〔3分下列说法不正确的是〔A.在锐角三角形中,最大的锐角x的取值范围是60°≤x<90°B.在△ABC中,锐角的个数最多C.在△ABC中三个内角α:β:γ=1:3:5,这个三角形是直角三角形D.一个三角形中至多有一个角是锐角考点:三角形内角和定理.分析:根据三角形内角和定理可以进行判断.解答:解:A、正确;B、在△ABC中,至少有2个锐角,故正确;C、在△ABC中三个内角α:β:γ=1:3:5,则α+β<γ,γ是钝角,因而是钝角三角形.故错误;D、一个三角形中至多有两个角是锐角,故错误.故选C.点评:本题考查了三角形内角和定理,一个三角形中至多有两个角是锐角,最多有一个直角或一个钝角.5.〔3分下列条件中,能判定△ABC≌△DEF的是〔A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.∠B=∠E,∠A=∠D,AC=EFD.∠B=∠E,∠A=∠D,AB=DE考点:全等三角形的判定.分析:全等三角形的判定定理有SAS,ASA,AAS,SSS,看看已知是否符合条件,即可得出答案.解答:解:A、根据AB=DE,BC=EF和∠A=∠D不能判定两三角形全等,故本选项错误;B、根据∠A=∠D,∠C=∠F,AC=DF才能得出两三角形全等,故本选项错误;C、根据∠B=∠E,∠A=∠D,AC=DF才能得出两三角形全等,故本选项错误;D、∵在△ABC和△DEF中,∴△ABC≌△DEF〔ASA,故本选项正确;故选D.点评:本题考查了全等三角形的判定定理,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②应对应相等,符合条件才能得出两三角形全等.6.〔3分下列分解因式正确的是〔A.m3﹣m=m〔m﹣1〔m+1B.x2﹣x﹣6=x〔x﹣1﹣6C.2a2+ab+a=a〔2a+bD.x2﹣y2=〔x﹣y2考点:提公因式法与公式法的综合运用.分析:根据提公因式法和公式法分别分解因式,从而可判断求解.解答:解:A、m3﹣m=m〔m2﹣1=m〔m﹣1〔m+1,故此选项正确;B、x2﹣x﹣6=〔x﹣3〔x+2,故此选项错误;C、2a2+ab+a=a〔2a+b+1,故此选项错误;D、x2﹣y2=〔x﹣y〔x+y,故此选项错误;故选:A.点评:本题主要考查提公因式法与公式法分解因式综合运用,能熟练地运用提公因式法分解因式是解此题的关键.7.〔3分对于分式,当x=﹣时,下列说法中:①分式值一定为0;②分式一定有意义;③当a=﹣时,分式无意义.其中正确的个数有〔A.3个B.2个C.1个D.0个考点:分式的值为零的条件;分式有意义的条件.分析:分式有意义:分母不等于零;分式无意义:分式等于零;分式的值等于零:分子等于零,且分母不等于零.解答:解:当x=﹣时,分子2x+a=0,当x=时,分母3x﹣1=0,当﹣=,即a=﹣时,分母3x﹣1=0.综上所述,正确的说法是③.故选C.点评:本题考查了分式有意义的条件、分式的值为零的条件.若分式的值为零,需同时具备两个条件:〔1分子为0;〔2分母不为0.这两个条件缺一不可.8.〔3分〔2011•XX如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF,上述结论中正确的个数是〔A.1个B.2个C.3个D.4个考点:翻折变换〔折叠问题;全等三角形的判定与性质;锐角三角函数的定义.专题:几何综合题;压轴题.分析:根据折叠的知识,锐角正切值的定义,全等三角形的判定,面积的计算判断所给选项是否正确即可.解答:解:①由折叠可得BD=DE,而DC>DE,∴DC>BD,∴tan∠ADB≠2,故①错误;②图中的全等三角形有△ABF≌△AEF,△ABD≌△AED,△FBD≌△FED,〔由折叠可知∵OB⊥AC,∴∠AOB=∠COB=90°,在Rt△AOB和Rt△COB中,,∴Rt△AOB≌Rt△COB〔HL,则全等三角形共有4对,故②正确;③∵AB=CB,BO⊥AC,把△ABC折叠,∴∠ABO=∠CBO=45°,∠FBD=∠DEF,∴∠AEF=∠DEF=45°,∴将△DEF沿EF折叠,可得点D一定在AC上,故③错误;④∵OB⊥AC,且AB=CB,∴BO为∠ABC的平分线,即∠ABO=∠OBC=45°,由折叠可知,AD是∠BAC的平分线,即∠BAF=22.5°,又∵∠BFD为三角形ABF的外角,∴∠BFD=∠ABO+∠BAF=67.5°,易得∠BDF=180°﹣45°﹣67.5°=67.5°,∴∠BFD=∠BDF,∴BD=BF,故④正确;⑤连接CF,∵△AOF和△COF等底同高,∴S△AOF=S△COF,∵∠AEF=∠ACD=45°,∴EF∥CD,∴S△EFD=S△EFC,∴S四边形DFOE=S△COF,∴S四边形DFOE=S△AOF,故⑤正确;正确的有3个,故选C.点评:综合考查了有折叠得到的相关问题;注意由对称也可得到一对三角形全等;用到的知识点为:三角形的中线把三角形分成面积相等的2部分;两条平行线间的距离相等.二、填空题〔每小题3分,共24分9.〔3分〔2019•XX一模已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为40°或100°.考点:等腰三角形的性质;三角形内角和定理.专题:计算题;分类讨论.分析:首先知有两种情况〔顶角是40°和底角是40°时,由等边对等角求出底角的度数,用三角形的内角和定理即可求出顶角的度数.解答:解:△ABC,AB=AC.有两种情况:〔1顶角∠A=40°,〔2当底角是40°时,∵AB=AC,∴∠B=∠C=40°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣40°﹣40°=100°,∴这个等腰三角形的顶角为40°和100°.故答案为:40°或100°.点评:本题考查了等腰三角形的性质和三角形的内角和定理的理解和掌握,能对有的问题正确地进行分类讨论.10.〔3分化简:〔a2b﹣2〔a﹣1b﹣2﹣3=.考点:负整数指数幂.分析:根据负整数指数幂的运算法则进行计算即可.解答:解:原式=•a3b6=.故答案为:.点评:本题考查的是负整数指数幂,熟知负整数指数幂等于该数正整数指数幂的倒数是解答此题的关键.11.〔3分〔2019•青羊区一模如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为45°.考点:线段垂直平分线的性质.专题:计算题.分析:首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.解答:解:∵AB=AC,∠A=30°〔已知∴∠ABC=∠ACB==75°∵DE垂直平分AC,∴AD=CD;∴∠A=∠ACD=30°,∴∠BCD=∠ACB﹣∠ACD,∴∠BCD=45°;故答案为:45°.点评:本题主要考查了线段垂直平分线的性质以及等腰三角形的性质,难度一般.12.〔3分如图,在△ABC中,AB=AC,∠B=30°,AB的垂直平分线EF交AB于点E,交BC于点F,EF=2,则BC的长为12.考点:线段垂直平分线的性质;等腰三角形的性质;含30度角的直角三角形.专题:计算题.分析:连接AF,根据等腰三角形性质求出∠C=∠B=30°,根据线段垂直平分线求出AF=BF=2EF=4,求出CF=2AF=8,即可求出答案.解答:解:连接AF,∵AC=AB,∴∠C=∠B=30°,∵EF是AB的垂直平分线,∴AF=BF,∴∠B=∠FAB=30°,∴∠CFA=30°+30°=60°,∴∠CAF=180°﹣∠C﹣∠CFA=90°,∵EF⊥AB,EF=2,∴AF=BF=2EF=4,∵∠C=30°,∠CAF=90°,∴CF=2AF=8,∴BC=CF+BF=8+4=12,故答案为:12.点评:本题考查了等腰三角形性质,线段垂直平分线性质,含30度角的直角三角形性质等知识点的应用,关键是求出CF和BF的长,题目比较典型,难度不大13.〔3分如果〔a+b2=19,a2+b2=14,则〔a﹣b2=9.考点:完全平方公式.专题:计算题.分析:先根据完全平方公式得到a2+2ab+b2=19,则2ab=5,再根据完全平方公式得〔a﹣b2=a2﹣2ab+b2,把a2+b2=14,2ab=5代入计算即可.解答:解:∵〔a+b2=19,即a2+2ab+b2=19,而a2+b2=14,∴14+2ab=19,∴2ab=5,∴〔a﹣b2=a2﹣2ab+b2=14﹣5=9.故答案为9.点评:本题考查了完全平方公式:a2±2ab+b2=〔a±b2,也考查了代数式的变形能力以及整体思想的运用.14.〔3分如图,在△ABC中,AB=a,AC=b,∠BAC=150°,则S△ABC=ab.考点:含30度角的直角三角形.分析:作CD⊥AB于点D,在直角三角形ACD中利用直角三角形的性质定理求得CD的长,然后根据三角形的面积公式即可求解.解答:解:作CD⊥AB于点D.∵在直角三角形ACD中,∠CAD=180°﹣∠BAC=30°,∴CD=AC=b,则S△ABC=AB•CD=a•b=ab.故答案是:ab.点评:本题考查了直角三角形的性质:30度的锐角所对的直角边等于斜边的一半,正确作出辅助线是关键.15.〔3分〔2019•海门市二模如图,在△ABC中,AD为BC边上的中线.已知AC=5,AD=4,则AB的取值范围是3<AB<13.考点:三角形三边关系;全等三角形的判定与性质.分析:延长AD到E,使DE=AD,连接CE,利用"边角边"证明△ABD和△ECD全等,再根据全等三角形对应边相等可得CE=AB,然后根据三角形的任意两边之和大于第三边,两边之差小于第三边解答.解答:解:延长AD到E,使DE=AD,连接CE,则AE=2AD=2×4=8,∵AD是BC边上的中线,∴BD=CD,∵在△ABD和△ECD中,,∴△ABD≌△ECD〔SAS,∴CE=AB,又∵AC=5,∴5+8=13,8﹣5=3,∴3<CE<13,即AB的取值范围是:3<AB<13.故答案为:3<AB<13.点评:本题考查了全等三角形的判定与性质,"遇中线加倍延"作辅助线构造出全等三角形是解题的关键.16.〔3分〔2011•襄阳关于x的分式方程的解为正数,则m的取值范围是m>2且m≠3.考点:分式方程的解.专题:计算题;压轴题.分析:方程两边同乘以x﹣1,化为整数方程,求得x,再列不等式得出m的取值范围.解答:解:方程两边同乘以x﹣1,得,m﹣3=x﹣1,解得x=m﹣2,∵分式方程的解为正数,∴x=m﹣2>0且x﹣1≠0,即m﹣2>0且m﹣2﹣1≠0,∴m>2且m≠3,故答案为m>2且m≠3.点评:本题考查了分式方程的解,要注意分式的分母不为0的条件,此题是一道易错题,有点难度.三、解答题〔其中17,18题各9分,19,21,22,24,26题各10分,20题12分,23题8分,25题14分,共102分17.〔9分已知2x+y=4,求代数式[〔x+y2﹣〔x﹣y2﹣2y〔x﹣y]÷4y的值.考点:整式的混合运算—化简求值.分析:先根据整式混合运算的法则把原式进行化简,再把2x+y=4代入进行计算即可.解答:解:原式=[x2+y2+2xy﹣x2﹣y2+2xy﹣2xy+y2]÷4y=〔2xy+y2÷4y=〔2x+y=×4=1.点评:本题考查的是整式的混合运算,熟知整式混合运算的法则是解答此题的关键.18.〔9分〔1计算:÷〔a﹣.〔2解方程:+=.考点:解分式方程;分式的混合运算.专题:计算题.分析:〔1原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果;〔2方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:〔1原式=•=;〔2去分母得:2〔3x﹣1+3x=1,去括号得:6x﹣2+3x=1,解得:x=,经检验x=是增根,原分式方程无解.点评:此题考查了解分式方程,以及分式的混合运算,解分式方程的基本思想是"转化思想",把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.〔10分〔2019•XX有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.〔保留作图痕迹,不要求写出画法考点:作图—应用与设计作图.分析:根据题意知道,点C应满足两个条件,一是在线段AB的垂直平分线上;二是在两条公路夹角的平分线上,所以点C应是它们的交点.〔1作两条公路夹角的平分线OD或OE;〔2作线段AB的垂直平分线FG;则射线OD,OE与直线FG的交点C1,C2就是所求的位置.解答:解:作图如下:C1,C2就是所求的位置.注:本题学生能正确得出一个点的位置得〔6分,得出两个点的位置得〔8分.点评:此题考查了作图﹣应用与设计作图,本题的关键是:①对角平分线、线段垂直平分线作法的运用,②对题意的正确理解.20.〔12分如图,在△ABC中,AB=AC,点D、E、F分别在边AB、BC、AC上,且BD=CE,∠DEF=∠B.图中是否存在和△BDE全等的三角形?说明理由.考点:全等三角形的判定;等腰三角形的性质.分析:根据已知得出∠BDE=∠CEF,再得出∠B=∠C,利用角边角得出三角形全等.解答:解:△CEF≌△BDE.〔1分理由如下:∵∠DEF=∠B,∠DEC=∠B+∠BDE=∠DEF+∠CEF,〔已知〔三角形外角的性质〔等量代换,∴∠BDE=∠CEF.〔等式的性质〔3分,在△ABC中,∵AB=AC,〔已知,∴∠B=∠C.〔等边对等角〔4分在△CEF和△BDE中,,〔5分∴△CEF≌△BDE.〔角边角〔6分点评:此题主要考查了三角形的全等判定,根据题意得出∠BDE=∠CEF是解决问题的关键.21.〔10分〔2011•XX甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.〔1问乙单独整理多少分钟完工?〔2若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?考点:分式方程的应用;一元一次不等式的应用.专题:应用题.分析:〔1将总的工作量看作单位1,根据本工作分两段时间完成列出分式方程解之即可;〔2设甲整理y分钟完工,根据整理时间不超过30分钟,列出一次不等式解之即可.解答:解:〔1设乙单独整理x分钟完工,根据题意得:,解得x=80,经检验x=80是原分式方程的解.答:乙单独整理80分钟完工.〔2设甲整理y分钟完工,根据题意,得,解得:y≥25,答:甲至少整理25分钟完工.点评:分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.22.〔10分〔2011•日照如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.〔1求证:DE平分∠BDC;〔2若点M在DE上,且DC=DM,求证:ME=BD.考点:全等三角形的判定与性质;等边三角形的判定与性质;等腰直角三角形.专题:证明题;压轴题.分析:〔1根据等腰直角△ABC,求出CD是边AB的垂直平分线,求出CD平分∠ACB,根据三角形的外角性质求出∠BDE=∠CDE=60°即可.〔2连接MC,可得△MDC是等边三角形,可求证∠EMC=∠ADC.再证明△ADC≌△EMC即可.解答:证明:〔1∵△ABC是等腰直角三角形,∴∠BAC=∠ABC=45°,∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=45°﹣15°=30°,∴BD=AD,∴D在AB的垂直平分线上,∵AC=BC,∴C也在AB的垂直平分线上,即直线CD是AB的垂直平分线,∴∠ACD=∠BCD=45°,∴∠CDE=15°+45°=60°,∴∠BDE=∠DBA+∠BAD=60°;∴∠CDE=∠BDE,即DE平分∠BDC.〔2如图,连接MC.∵DC=DM,且∠MDC=60°,∴△MDC是等边三角形,即CM=CD.∠DMC=∠MDC=60°,∵∠ADC+∠MDC=180°,∠DMC+∠EMC=180°,∴∠EMC=∠ADC.又∵CE=CA,∴∠DAC=∠CEM.在△ADC与△EMC中,,∴△ADC≌△EMC〔AAS,∴ME=AD=BD.点评:此题主要考查等腰直角三角形,全等三角形的判定与性质,等边三角形的判定与性质的等知识点,难易程度适中,是一道很典型的题目.23.〔8分某种产品的原料降价,因而厂家决定对产品进行降价.现有两种方案:方案1:第一次降价p%,第二次降价q%.方案2:第一、二次降价均为%.其中p,q是不相等且使此情境有意义的正数,两种方案哪种降价最多?考点:整式的混合运算.专题:应用题.分析:设该产品原价为a元,根据题意列出两种方案的价格,利用作差法比较大小即可.解答:解:设该产品的原价是a元,根据题意得:方案1的价格为:a〔1﹣p%〔1﹣q%,方案2的价格为:a〔1﹣%2,则a〔1﹣p%〔1﹣q%﹣a〔1﹣%2=﹣〔q%﹣p%2,∵p≠q,∴﹣〔q%﹣p%2<0,则方案1降价多.点评:此题考查了整式的混合运算,弄清题意是解本题的关键.24.〔10分一块原边长分别为a,b〔a>1,b>1的长方形,一边增加1,另一边减少1.〔1当a=b时,变化后的面积是增加还是减少?〔2当a>b时,有两种方案,第一种方案如图1,第二种方案如图2.请你比较这两种方案,确定哪一种方案变化后的面积比较大.考点:整式的混合运算.分析:〔1根据题意得出算式,求出两式的差,再判断即可;〔2求出两种方案的算式,求出两式的差,再判断即可.解答:解:〔1设原来长方形的面积是S1,变化后的长方形的面积是S2,根据题意得:S=ab,S2=〔a+1〔b﹣1=ab+b﹣a﹣1,∴S2﹣S1=ab+b﹣a﹣1﹣ab=b﹣a﹣1,∵a=b,∴b﹣a﹣1=﹣1<0,∴S2<S1,∴变化后面积减小了.〔2方案1,S1=〔a+1〔b﹣1=ab﹣a+b﹣1,方案2,S2=〔a﹣1〔b+1=ab+a﹣b﹣1,∴S1﹣S2=﹣2a+2b=﹣2〔a﹣b,∵a>b,∴S1﹣S2<0,∴方案2变化后面积大.点评:本题考查了整式的混合运算的应用,关键是能根据题意列出算式.25.〔14分〔2019•XX如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN〔1如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.〔2如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.考点:旋转的性质;全等三角形的判定与性质;正方形的性质;梯形.专题:几何综合题.分析:〔1先判定梯形ABCD是等腰梯形,根据等腰梯形的性质可得∠A+∠BCD=180°,再把△ABM绕点B顺时针旋转90°,点A与点C重合,点M到达点M′,根据旋转变换的性质,△ABM和△CBM′全等,根据全等三角形对应边相等可得AM=CM′,BM=BM′,根据全等三角形对应角相等可得∠A=∠BCM′,∠ABM=∠M′BC,然后证明M′、C、N三点共线,再利用"边角边"证明△BMN和△BM′N全等,然后根据全等三角形对应边相等即可得证;〔2在∠CBN内部作∠CBM′=∠ABM交CN于点M′,然后证明∠C=∠BAM,再利用"角边角"证明△ABM和△CBM′全等,根据全等三角形对应边相等可得AM=CM′,BM=BM′,再证明∠MBN=∠M′BN,利用"边角边"证明△MBN和△M′BN全等,根据全等三角形对应边相等可得MN=M′N,从而得到MN=CN﹣AM.解答:解:〔1MN=AM+CN.理由如下:如图,∵BC∥AD,AB=BC=CD,∴梯形ABCD是等腰梯形,∴∠A+∠BCD=180°,把△ABM绕点B顺时针旋转90°到△CBM′,则△ABM≌△CBM′,∴AM=CM′,BM=BM′,∠A=∠BCM′,∠ABM=∠M′BC,∴∠BCM′+∠BCD=180°,∴点M′、C、N三点共线,∵∠MBN=∠ABC,∴∠M′BN=∠M′BC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年金融租赁服务项目建议书
- 2025年半导体用石英玻璃材料项目发展计划
- 2025年钢增强塑料复合管项目发展计划
- 2025年特种机载装置合作协议书
- 性别差异下的教育心理学如何针对不同性别激发学生潜力
- 教育投资的新趋势游戏化学习平台的融资路径
- 教育政策成效评估的多维度分析
- 未来科技趋势下的教育技术增强现实与虚拟现实的融合应用研究
- 2025年甘肃省靖远县四中物理高一第二学期期末质量跟踪监视试题含解析
- 幼儿教育中教师心理调适的技巧与方法
- 羽毛球知识教育PPT模板
- 电梯安装技术交底完整版
- 氧化铝溶出机组热试方案
- 小学阅读理解提分公开课课件
- esd防静电手册20.20标准
- 教育政策与法规课件
- 养老护理员职业道德27张课件
- 少儿美术课件-《长颈鹿不会跳舞》
- 人教版五年级数学下册单元及期中期末测试卷含答案(共16套)
- GB∕T 17989.1-2020 控制图 第1部分:通用指南
- EN485.32003铝及铝合金薄板、带材和厚板第三部分(译文)
评论
0/150
提交评论