




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.框图与程序是解决数学问题的重要手段,实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决,例如,为了计算一组数据的方差,设计了如图所示的程序框图,其中输入,,,,,,,则图中空白框中应填入()A.,B.C.,D.,2.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为()A.B.C.D.3.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第天长高尺,芜草第天长高尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:,)A.B.C.D.4.已知向量,,若,则()A.B.C.-8D.85.已知双曲线的焦距为,若的渐近线上存在点,使得经过点所作的圆的两条切线互相垂直,则双曲线的离心率的取值范围是()A.B.C.D.6.设,命题“存在,使方程,使方程,使方程,使方程,使方程有实根”的否定是()A.任意B.任意C.存在D.存在7.等差数列无实根有实根无实根有实根的前项和为,若,,则数列的公差为()A.-2B.2C.4D.78.我国著名数学家陈景润在哥德巴赫猜想的研究中取得了世界瞩目的成就,哥德巴赫猜想内容是“每个大于的偶数可以表示为两个素数的和”(注:如果一个大于的整数除了和自身外无其他正因数,则称这个整数为素数),在不超过()的素数中,随机选取个不同的素数、,则的概率是A.B.C.D.9.记单调递增的等比数列的前项和为,若,,则()A.B.C.D.10.已知过点且与曲线相切的直线的条数有().A.0B.1C.2D.311.公比为2的等比数列中存在两项在区间,,满足,则的最小值为()A.B.C.D.12.设,若函数上有三个零点,则实数的取值范围是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数为上的奇函数,满足.则不等式的解集为________.14.记等差数列15.已知抛物线和的前项和分别为和,若,则______.的焦点为,其准线与坐标轴交于点,过的直线与抛物线,则直线的斜率的公切线,并且分别与轴正半交于两点,若________.16.直线是圆:与圆:轴,轴正半轴相交于,两点,则的面积为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,长为3的线段的两端点分别在轴、轴上滑动,点为线段上的点,且满足.记点的轨迹为曲线.(1)求曲线的方程;为曲线(2)若点上的两个动点,记,判断是否存在常数使得点到直线的距离为定值?若存在,求出常数的值和这个定值;若不存在,请说明理由.18.(12分)已知椭圆过点,设椭圆的上顶点为,右顶点和右焦点分别为,,且.(1)求椭圆的标准方程;(2)设直线,若交椭圆于,两点,设直线,试判断直线是否过定点?若过定点,求出该定点的坐标;若不过定点,请与直线的斜率分别为,说明理由.19.(12分)如图,在四棱锥中,平面平面ABCD,,,底面ABCD是边长为2的菱形,点E,F分别为棱DC,BC的中点,点G是棱SC靠近点C的四等分点.求证:(1)直线平面EFG;(2)直线平面SDB.20.(12分)已知的三个内角所对的边分别为,向量,,且.(1)求角的大小;(2)若,求的值21.(12分)已知函数.(1)求证:当时,;(2)若对任意存在和使成立,求实数的最小值.22.(10分)如图,三棱柱的侧棱垂直于底面,且,,,,是棱的中点.(1)证明:;(2)求二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】依题意问题是,然后按直到型验证即可.【详解】根据题意为了计算7个数的方差,即输出的,观察程序框图可知,应填入,,故选:A.【点睛】本题考查算法与程序框图,考查推理论证能力以及转化与化归思想,属于基础题.2、D【解析】先求出球心到四个支点所在球的小圆的距离,再加上侧面三角形的高,即可求解.【详解】设四个支点所在球的小圆的圆心为,球心为,可得球的半径为1,由题意,球的体积为,即又由边长为的正方形硬纸,可得圆的半径为,,利用球的性质可得又由到底面的距离即为侧面三角形的高,其中高为,所以球心到底面的距离为.故选:D.【点睛】本题主要考查了空间几何体的结构特征,以及球的性质的综合应用,着重考查了数形结合思想,以及推理与计算能力,属于基础题.3、C【解析】由题意可利用等比数列的求和公式得莞草与蒲草n天后长度,进而可得:,解出即可得出.【详解】由题意可得莞草与蒲草第n天的长度分别为据题意得:,解得2n=12,n21.故选:C.【点睛】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.4、B【解析】先求出向量【详解】由向量,的坐标,然后由,可求出参数的值.,则,,又,则,解得.故选:B【点睛】本题考查向量的坐标运算和模长的运算,属于基础题.5、B【解析】由可得;由过点所作的圆的两条切线互相垂直可得,又焦点到双曲线渐近线的距离为,则,进而求解.【详解】,所以离心率又圆,是以为圆心,半径的圆,要使得经过点所作的圆的两条切线互相垂直,必有,而焦点到双曲线渐近线的距离为,所以,即,所以,所以双曲线的离心率的取值范围是.故选:B【点睛】本题考查双曲线的离心率的范围,考查双曲线的性质的应用.6、A【解析】只需将“存在”改成“任意”,有实根改成无实根即可.【详解】由特称命题的否定是全称命题,知“存在,使方程有实根”的否定是“任意,使方程无实根”.故选:A【点睛】本题考查含有一个量词的命题的否定,此类问题要注意在两个方面作出变化:1.量词,2.结论,是一道基础题.7、B【解析】在等差数列中由等差数列公式与下标和的性质求得【详解】,再由等差数列通项公式求得公差.在等差数列则的前项和为,则故选:B【点睛】本题考查等差数列中求由已知关系求公差,属于基础题.8、B【解析】先列举出不超过的素数,并列举出所有的基本事件以及事件“在不超过的素数中,随机选取个不同的素数、,满足率.”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概【详解】不超过的素数有:、、、、、,在不超过的素数中,随机选取个不同的素数,所有的基本事件有:、、、、、、、、、、、、、、,共种情况,其中,事件“在不超过的素数中,随机选取个不同的素数、,且”包含的基本事件有:、、、,共种情况,因此,所求事件的概率为故选:B..【点睛】本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题.9、C【解析】先利用等比数列的性质得到的值,再根据的方程组可得的值,从而得到数列的公比,进而得到数列的通项和前项和,根据后两个公式可得正确的选项.【详解】因为为等比数列,所以可得,故即,由或,因为为递增数列,故符合.此时,所以或(舍,因为为递增数列).故,.故选C.【点睛】一般地,如果(1)若为等比数列,为其前项和,则有性质:,则;(2)公比时,则有,其中为常数且;(3)为等比数列()且公比为.10、C【解析】设切点为,则,由于直线经过点,可得切线的斜率,再根据导数的几何意义求出曲线在点处的切线斜率,建立关于的方程,从而可求方程.【详解】若直线与曲线切于点,则,,又,,,解得,过点与曲线相切的直线方程为或,故选C.【点睛】本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.11、D【解析】根据已知条件和等比数列的通项公式,求出关系,即可求解.【详解】,当当当时,时,时,,当,当时,时,,,,当时,,最小值为.故选:D.【点睛】本题考查等比数列通项公式,注意为正整数,如用基本不等式要注意能否取到等号,属于基础题.12、D【解析】令,可得.在坐标系内画出函数的图象(如图所示).当时,.由得.设过原点的直线与函数的图象切于点,则有,解得.所以当直线又当直线与函数的图象切时时,有.经过点,解得.结合图象可得当直线与函数在区间的图象有3个交点时,实数的取值范围是.即函数上有三个零点时,实数的取值范围是.选D.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】构造函数,利用导数判断出函数的单调性,再将所求不等式变形为,利用函数的单调性即可得解.【详解】设,则设,,则.当时,单调递增.,此时函数单调递减;当时,,此时函数,所以,函数在在处取得极小值,也是最小值,即,,,即,所以,函数函数上为增函数,为上的奇函数,则,,则不等式等价于,又,解得.因此,不等式故答案为:【点睛】的解集为..本题主要考查不等式的求解,构造函数,求函数的导数,利用导数和函数单调性之间的关系是解决本题的关键.综合性较强.14、【解析】结合等差数列的前项和公式,可得,求解即可.【详解】由题意,,,因为,所以.故答案为:.【点睛】本题考查了等差数列的前项和公式及等差中项的应用,考查了学生的计算求解能力,属于基础题.15、【解析】求出抛物线焦点坐标,由【详解】,结合向量的坐标运算得,直线方程为,得斜率.,代入抛物线方程后应用韦达定理得,,从而可求得由得,即联立解得得或.,.故答案为:【点睛】本题考查直线与抛物线相交,考查向量的线性运算的坐标表示.直线方程与抛物线方程联立后消元,应用韦达定理是解决直线与抛物线相交问题的常用方法.16、【解析】根据题意画出图形,设,利用三角形相似求得的值,代入三角形的面积公式,即可求解.【详解】如图所示,设,由与相似,可得,解得,再由与相似,可得,解得,由三角形的面积公式,可得的面积为.故答案为:.【点睛】本题主要考查了直线与圆的位置关系的应用,以及三角形相似的应用,着重考查了数形结合思想,以及推理与运算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在;常数,定值【解析】(1)设出的坐标,利用以及,求得曲线的方程.(2)当直线的斜率存在时,设出直线的方程,求得到直线的距离.联立直线的方程和曲线的方程,写出根与系数关系,结合以及为定值,求得的值.当直线的斜率不存在时,验证.由此得到存在常数,且定值.【详解】(1)解析:(1)设,,由题可得,解得又,即得:,消去(2)当直线的斜率存在时,设直线,可得:的方程为设由由点到的距离为定值可得(为常数)即得:即,又为定值时,,此时,且符合当直线的斜率不存在时,设直线方程为由题可得,时,,经检验,符合条件综上可知,存在常数【点睛】,且定值本小题主要考查轨迹方程的求法,考查直线和椭圆的位置关系,考查运算求解能力,考查椭圆中的定值问题,属于难题.18、(1)(2)直线过定点,该定点的坐标为.【解析】(1)因为椭圆过点,所以,设为坐标原点,因为,所以,又,所以,将联立解得(负值舍去),所以椭圆的标准方程为.(2)由(1)可知,设,.将代入,消去可得,则,,,所以,所以,此时,所以,此时直线的方程为,即,令,可得,所以直线过定点,该定点的坐标为.19、(1)见解析(2)见解析【解析】(1)连接AC、BD交于点O,交EF于点H,连接GH,再证明即可.(2)证明与即可.【详解】(1)连接AC、BD交于点O,交EF于点H,连接GH,所以O为AC的中点,H为OC的中点,由E、F为DC、BC的中点,再由题意可得,所以在三角形CAS中平面EFG,平面EFG,所以平面EFG.,直线(2)在中,,,,由余弦定理得,,解得,即,由勾股定理逆定理可知平面ABCD,所以,因为侧面底面ABCD是菱形,所以底面ABCD,由面面垂直的性质定理可知,因为,所以平面SDB.,因为【点睛】本题考查线面平行与垂直的证明.需要根据题意利用等比例以及余弦定理勾股定理等证明.属于中档题.20、(1)(2)【解析】利用平面向量数量积的坐标表示和二倍角的余弦公式得到关于的方程,解方程即可求解;由知,在中利用余弦定理得到关于的方程,与方程联立求出,进而求出,利用两角差的正弦公式求解即可.【详解】由题意得,,由二倍角的余弦公式可得,,又因为解得,所以,或,,.在中,由余弦定理得,即又因为,把代入整理得,,解得,,所以为等边三角形,,,即.【点睛】本题考查利用平面向量数量积的坐标表示和余弦定理及二倍角的余弦公式解三角形;熟练掌握余弦的二倍角公式和余弦定理是求解本题的关键;属于中档题、常考题型.21、(1)见解析;(2)【解析】(1)不等式等价于,设,利用导数可证恒成立,从而原不等式成立.(2)由题设条件可得在上有两个不同零点,且,利用导数讨论的单调性后可得其最小值,结合前述的集合的包
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城乡供水管道建设技术方案
- 人防设施维护技术标准与流程优化
- 仓库作业信息化管理方案
- 自用光伏项目的能源交易平台设计方案
- 高速公路路段检查与检修方案
- 城乡供水智能化设备选型方案
- 利用绘本资源提升幼儿语言能力策略探究
- 虚拟主播在线教育的人本传播模式分析
- 个人投资管理合同范本
- 江西生地中考试卷及答案
- 2024年小学六年级语文阅读理解讲义:记叙文阅读训练
- 中建三局三公司安装分公司劳务企业定额
- DL∕T 1487-2015 单相智能电能表技术规范
- 海南省文昌市2023-2024学年八年级上学期期中检测语文试题
- 中国少年先锋队队史
- 老年临终哀伤辅导护理
- 学校人才引进方案
- 多组学数据的整合与分析
- 工余安全知识培训
- 初中英语试卷讲评课课件
- 23秋国家开放大学《液压气动技术》形考任务1-3参考答案
评论
0/150
提交评论