




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ProcessCapability(Cp/Cpk/Pp/Ppk)
GlobalTrainingMaterialCreator :GlobalMechanicsProcessManagerFunction :MechanicsApprover :GaryBradley/GlobalProcessTeamDocumentID :DMT00018-ENVersion/Status :V.1.0/ApprovedLocation :Notes:\\…\NMP\DOCMANR4\PCP\PCProcessLibraryDocManChangeHistory:Issue Date HandledBy Comments1.0 21stDec’01 JimChristy&SørenLundsfryd ApprovedforGlobalUseNOTE–Allcommentsandimprovementsshouldbeaddressedtothecreatorofthisdocument.ContentsSection Heading/Description Page1 Variation,TolerancesandDimensionalControl 4 2 Population,SampleandNormalDistribution 153 CpandCpkConcept 284 UseoftheNMPDataCollectionSpreadsheet 445 ConfidenceofCpk 52 ProcessCapability-EvaluatingManufacturingVariationAcknowledgementsBennyMatthiassen (NMPCMT,Copenhagen,Denmark)FrankAdler (NMPAlliance,Dallas,USA)JoniLaakso (NMPR&D,Salo,Finland)JimChristy (NMPSRC,Southwood,UK)Section1Variation,TolerancesandDimensionalControlTwoTypesofProductCharacteristicsVariable:Acharacteristicmeasuredinphysicalunits,limetres,volts,amps,decibelandseconds.ONOFFAttribute:Acharacteristicthatbycomparisontosomestandardisjudged“good”or“bad”,e.g.freefromscratches(visualquality).InthistrainingwedealwithvariablesonlyTheSourcesofProcess/SystemVariationMethodsOperatorsCustomerSatisfactionMaterialEnvironmentEquipmentProcessTwoTypesofProcessesAllprocesseshave:Natural(random)variability
=>duetocommoncausesStableProcess:
AprocessinwhichvariationinoutcomesarisesonlyfromcommoncausesUnstableProcess:
AprocessinwhichvariationisaresultofbothcommonandspecialcausesUSLLSLnominalvalueDefectUSLLSLnominalvalue
Unnaturalvariability=>duetospecialcausesShewhart(1931)TheTwoCausesofVariationCommonCauses:Causesthatareimplementedintheprocessduetothedesignoftheprocess,andaffectalloutcomesoftheprocessIdentifyingthesetypesofcausesrequiresmethodssuchasDesignofExperiment(DOE),etc.
SpecialCauses:Causesthatarenotpresentintheprocessallthetimeanddonotaffectalloutcomes,butarisebecauseofspecificcircumstancesSpecialcausescanbeidentifiedusingStatisticalProcessControl(SPC)USLLSLNominal
valueDefectUSLLSLnominal
valueTolerancesLSL(lowerspecificationlimit)10,7USL(upperspecificationlimit)10,9AcceptablepartRejectedPartRejectedProductNominal10,80,1RejectedPartAtoleranceisaallowedmaximumvariationofadimension.MeasurementReportInmostcaseswemeasureonlyonepartpercavityformeasurementreportExampleofCapabilityAnalysisDataForsomecriticaldimensionsweneedtomeasuremorethan1partForcapabilitydataweusuallymeasure5pcs2times/hour=100pcs(butsamplingplanneedstobemadeonthebasisofproductionquantity,rundurationandcycletime)ProcessCapability-Whatisit?ProcessCapabilityisameasureoftheinherentcapabilityofamanufacturingprocesstobeabletoconsistentlyproducecomponentsthatmeettherequireddesignspecificationsProcessCapabilityisdesignatedbyCpandCpkProcessPerformanceisameasureoftheperformanceofaprocesstobeabletoconsistentlyproducecomponentsthatmeettherequireddesignspecifications.ProcessPerformanceincludesspecialcausesofvariationnotpresentinProcessCapabilityProcessPerformanceisdesignatedPpandPpkWhyMakeProcessCapabilityStudiesLSL(lowerspecificationlimit)10,7USL(upperspecificationlimit)10,9Nominal10,80,1Thispartiswithinspec.ThetoolwouldbeapprovedifonlythispartwasmeasuredThesepartsareoutofspecandcouldbeapprovedifonlyonegoodpartwasmeasuredAprocesscapabilitystudywouldrevealthatthetoolshouldnotbeacceptedWhenadimensionneedstobekeptproperlywithinspec,wemuststudytheprocesscapability….butstillthisisnoguaranteefortheactualperformanceoftheprocessasitisonlyaninitialcapabilitystudy
E1.5
E1
E2
E3
E4
E5TheNokiaProcessVerificationProcessBlackdiamondstobefixedbyE3(oftenachangeofawhitediamond)ProposalforblackdiamondstobediscussedwithSupplier.Max:105,85OngoingProcessControl(SPC)TolerancesappliedtodrawingType1FunctionalCharacteristics-1part/cavitymeasuredformeasurementreportWhitediamonds(s)tobeagreedWhitediamonds(s)tobediscussedwithsupplier10parts/cavitymeasuredformeasurementreportCapabilitystudy:Requirement:CpandCpk>1.67byE3.Quantitiestobeagreedwithsupplier.Minimum5partspr1/2hourin10hoursmeasuredforeachcavity=100parts.Canvarydependingontoolcapacity,e.g.stampedparts(seeDMY00019-EN)Section2.Population,SampleandNormalDistributionTheBellShaped(Normal)DistributionSymmetricalshapewithapeakinthemiddleoftherangeofthedata.Indicatesthattheinputvariables(X's)totheprocessarerandomlyinfluenced.“PopulationParameters”=Populationmean=PopulationstandarddeviationPopulationversusSamplePopulationAnentiregroupofobjectsthathavebeenmadeorwillbemadecontainingacharacteristicofinterestSampleThegroupofobjectsactuallymeasuredinastatisticalstudyAsampleisusuallyasubsetofthepopulationofinterestPopulationSample“SampleStatistics” x=Samplemean s=SamplestandarddeviationTheNormalDistributionWhatMeasurementsCanBeUsedtoDescribeaProcessorSystem?Example:1
=52
=73
=44
=25
=6mean(average)ordescribesthelocationofthedistributionµ(mü),ameasureofcentraltendency,isthemeanoraverageofallvaluesinthepopulation.Whenonlyasampleofthepopulationisbeingdescribed,meanismoreproperlydenotedas
(x-bar):Example:1
=52
=73
=44
=25
=6Themostsimplemeasureofvariabilityistherange.Therangeofasampleisdefinedbyasthedifferencebetweenthelargestandthesmallestobservationfromsamplesinasub-group,e.g.5consecutivepartsfromthemanufacturingprocess.WhatMeasurementsCanBeUsedtoDescribeProcessvariation?sST-oftennotatedasorsigma,isanothermeasureofdispersionorvariabilityandstandsfor““short-termstandarddeviation””,whichmeasuresthevariabilityofaprocessorsystemusing““rational””sub-grouping.where
istherangeofsubgroupj,Nthenumberofsubgroups,andd2*dependsonthenumberNofsubgroupsandthesizenofasubgroup(seenextslide)WhatMeasurementsCanBeUsedtoDescribeProcessvariation?d2*valuesforSSTWhere:N=no.ofsub-groups,n=no.ofsamplesineachsub-groupd2*d2Typical:N=20&n=5
x3
x2
x1
x10x_tExample:WhatMeasurementsCanBeUsedtoDescribeProcessvariation?TheDifferenceBetweenSSTandsLT!!meanTimeDimensionShorttermStandardDeviationLongtermStandardDeviationSubgroupsizen=5NumberofsubgroupsN=7TRENDSubgroupNo.1ThedifferencebetweenthestandarddeviationssLTandsSTgivesanindicationofhowmuchbetteronecandowhenusingappropriateproductioncontrol,likeStatisticalProcessControl(SPC).Short-termstandarddeviation:Long-termstandarddeviation:ThedifferencebetweensSTandsLTThedifferencebetweensSTandsLTThedifferencebetweensLTandsSTisonlyinthewaythatthestandarddeviationiscalculatedsLTisalwaysthesameorlargerthansSTIfsLTequalssST,thentheprocesscontroloverthelonger-termisthesameastheshort-term,andtheprocesswouldnotbenefitfromSPCIfsLTislargerthansST,thentheprocesshaslostcontroloverthelonger-term,andtheprocesswouldbenefitfromSPCThereliabilityofsLTisimprovedifthedataistakenoveralongerperiodoftime.AlternativelysLTcanbecalculatedonseveraloccasionsseparatedbytimeandtheresultscomparedtoseewhethersLTisstableExercise1:SampleDistributions1.InExcelfile"Dataexercise1.xls"youfind100measurementsbeingtheresultofacapabilitystudy.Thespecificationforthedimensionis15,16,012.Howwelldoesthesamplepopulationfitthespecification,e.g.shouldweexpectanypartsoutsidespec?3.Mentionpossibleconsequencesofhavingapartoutsidespec.4.Mentionpossiblecausesofvariationforparts.5.Calculatethesamplemeanandsamplestandarddeviationforthe100measurements.UsetheaverageandstdevfunctionsExcel.Section3.CpandCpkConceptDefiningCpandPpSamplemeanProcessvariation6*s
USL-LSLLSL
USLNominaldimThetoleranceareadividedbythetotalprocessvariation,irrespectiveofprocesscentring.DefiningCpkandPpkSamplemeanProcessvariation3sProcessvariation3sMean-LSLUSL-MeanLSL
USLNominaldimCpkandPpkIndexesaccountalsoforprocesscentring.WhatistheDifferenceBetweenCpandCpk?TheCpindexonlyaccountsforprocessvariabilityTheCpkIndexaccountsforprocessvariabilityandcenteringoftheprocessmeantothedesignnominalTherefore,CpCpkNOTE:SameappliesalsoforPpandPpkCp=Cpk(bothlow)LSLUSLMean=NominalRejectpartsRejectpartsCphigh,Cpklow
Processshouldbeoptimized!NominalLSLMeanUSLRejectpartsWhatDoTheseIndexesTellUs??Simplenumericalvaluestodescribethequalityoftheprocess>>ThehigherthenumberthebetterRequirementforCpandCpkis1.67min.RecommendationforPpandPpkis1.33min.AreweabletoimproveourprocessbyusingSPC?Ifindexislow,followingthingsshouldbegivenathought:IstheproductdesignOK?Aretolerancelimitssetcorrectly?Tootight?Istheprocesscapableofproducinggoodqualityproducts?Processvariation?DOErequired?Isthemeasuringsystemcapable?(SeeGageR&R)Cpk-Witha2-sigmasafetymargin-3sST+3sSTLCLUCLLSLUSLMeanvalue=NominalvalueorTargetRequirementforCpandCpkis1.67min.1.67isaratioof=5/3or10/6.6*standarddeviation10*standarddeviation2*standarddeviation2*standarddeviationCpk<1.67theprocessNOTCAPABLEAcceptabilityofCpkIndexCpk>=1.67theprocessisCAPABLECpk>=2.0theprocesshasreachedSixSigmalevelWhatDoTheseIndexesTellUs??IfCp=Cpk,IfPp=Ppk,IfCpk<Cp,IfPpk<Pp,IfCp=Pp,IfCpk=Ppk,IfPp<Cp,IfPpk<Cpk,…thenprocessisaffectedbyspecialcauses.InvestigateX-bar/R-chartforout-of-controlconditions.SPCmaybeeffective…thenprocessisnotaffectedbyspecialcausesduringthestudyrun.SPCwouldnotbeeffectiveinthiscase…thenprocessperfectlycentred…thenprocessnotcentred(checkprocessmeanagainstdesignnominal)CpandCpkIndicesandDefects(bothtailsofthenormaldistribution)Pp=Ppk=1,3363ppmdefects=0,006%Cp=Cpk=1,670,6ppmdefects=0,00006%Note:PpmrejectratescalculatedfromCp&CpkarebasedontheshorttermvariationwhichmaynotrepresentthelongtermrejectrateTheEffectsofCpkandCponFFRExercise2:CpandCpkCalculateCpandCpkforthe100measurementsinthefile"Dataexercise1.xls"DeterminetheapproximateCpandCpkforthe4samplepopulationsonthefollowingpageShouldactionsbemadetoimprovetheseprocesses.Ifyes,which?EstimateCpandCpk?Thewidthofthenormaldistributionsshowninclude±3*sLSLUSLA)LSLUSLB)LSLUSLC)USLLSLD)EstimateCpandCpk?-A)LSLUSLA)MeanandnominalUSL-LSL6*sUSL-MeanMean-LSL3*sEstimateCpandCpk?-B)LSLUSLB)NominalMeanUSL-LSL6*sUSL-MeanMean-LSL3*sEstimateCpandCpk?-C)LSLUSLC)NominalMeanUSL-LSL6*sUSL-MeanMean-LSL3*sEstimateCpandCpk?-DUSLLSLD)NominalMeanUSL-LSL6*sUSL-MeanMean-LSL3*sSection4.UseoftheNMPDataCollectionSpreadsheetExampleofhowtoCollectData1. Runinandstabiliseprocess2. Notethemainparametersforreference3. Whentheprocessisstablerunthetoolfor10hours3. Take5partsoutfromeachcavityeveryhalfhourandmarkthemwithtime,dateandcavity.Total20setsof5partsfromeachcavitymustbemade,oraccordingtoagreement.4. Afterthelastsamplelotnotethemainprocessparametersforreference5. Measureandrecordthemainfunctionalcharacteristics(whitediamonds)6. FilldataintotheNMPdatacollectionspreadsheet7. Analyse!SeeDMY00019-ENClassificationandMarkingofFunctionalCharacteristicsTimeDimensionSubgroup
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼崽零食测试题及答案
- 致胜中考数学试题及答案
- 农学讲师面试题目及答案
- 2025年网球运动员潜力评估考试题及答案
- 幼儿园安全测试题及答案
- 2025年计算机等级考试题目及答案解析
- 2013成考试题及答案
- 西方国家的多党制解析试题及答案
- 高分实现路径的软件设计师考试试题及答案
- 机电工程的未来趋势试题及答案
- 2025年中国稀土磁性材料行业市场规模调研及投资前景研究分析报告
- T/DGGC 005-2020全断面隧道掘进机再制造检测与评估
- 湖南省永州市冷水滩区京华中学2025年中考二模 历史试题(含答案)
- (三模)烟台市2025届高三高考诊断性测试地理试卷(含答案)
- 江苏省镇江市江南学校2025年七下数学期末综合测试试题含解析
- 水权与水资源管理考试试题及答案
- 公路防汛安全培训课件
- 安徽卓越县中联盟2024-2025学年高三下学期5月份检测物理试题+答案
- 2025至2030中国养发服务行业营销策略及竞争格局研究报告
- 2025年全国燃气安全生产管理人员理论考试笔试试题(含答案)
- 计量员培训课件
评论
0/150
提交评论