钻镗专用机床液压系统课程设计_第1页
钻镗专用机床液压系统课程设计_第2页
钻镗专用机床液压系统课程设计_第3页
钻镗专用机床液压系统课程设计_第4页
钻镗专用机床液压系统课程设计_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

钻镗专用机床液压系统课程设计-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN液压传动课程设计学号指导教师

钻镗专用机床液压系统设计15级机械设计制造及其自动化(升本)刘备xxxxxxxxxxx诸葛亮机械与车辆工程系二○一四年六月六日目录一、任务书 3二、指导教师评阅表 4三、设计内容 5(一) 5(二) 5(三) 5(四) 6(五) 6四、设计小结 14五、参考资料 14蚌埠学院机械与车辆工程系液压传动课程设计任务书班级2015机械设计制造及自动化升本姓名刘备学号指导教师:诸葛亮一、设计题目:s 设计一台卧式多轴镗孔专用机床的液压传动系统,要完成的工作循环是“快进—工进—快退—原位停止”,液压系统的主要参数与性能要求如下:加120000NG=22000N;导轨形式为矩f=;f=,100mm,快进与快退的速6m/min60mm50mm/mins 二、设计要求:液压系统图拟定时需要提供2种以上的设计方案的选择比较。从中选择你认为更好的一种进行系统元件选择计算。三、工作量要求1·液压系统图1张(A1)2·液压缸装配图1张3·设计计算说明书1份四、设计时间201666日--2016610日蚌埠学院本科课程设计评阅表学生姓名刘备学号XXXXXXX课题名称钻镗专用机床液压系统设计指导教师评语:指导教师(签名):2016学生姓名刘备学号XXXXXXX课题名称钻镗专用机床液压系统设计指导教师评语:指导教师(签名):2016616日评定成绩引言液压系统已经在各个部门得到越来越广泛的应用,而且越先进的设备,其应用液压系统的部门就越多。纵,易于防止过载事故,自动润滑、元件寿命较长,易于实现标准化、系列化。液压传动的基本目的就是用液压介质来传递能量,而液压介质的能量是由其所具有的压力及力流量来表现的。而所有的基本回路的作用就是控制液压介质的压力和流量,因此液压基本回路的作用就是三个方面:控制压力、控制流量的大小、控制流动的方向。所以基本回路可以按照这三方面的作用而分成三大类:压力控制回路、流量控制回路、方向控制回路。第一章明确液压系统的设计要求设计一台卧式多轴镗孔专用机床的液压传动系统,要完成的工作循环是“快进—工进—快退—原位停止”,液压系统的主要参数与性能要求如下:加120000NG=22000N;导轨形式为矩fs=;fd=,100mm,快进与快退的速6m/min60mm50mm/min,加速和减速时间要求不大于,机床加工时,要求快进转工进平稳可靠,请设计该组合机床的液压传动系统。第二章负载与运动分析负载分析中,暂不考虑回油腔的背压力,液压缸的密封装置产生的摩擦阻力在机械效率中加以考虑。因工作部件是卧式放置,重力的水平分力为零,这样需要考虑的力有:夹紧力,导轨摩擦力,惯性力。在对液压系统进行工况分析时,本设计实例只考虑组合机床动力滑台所受到的工作负载、惯性负载和机械摩擦阻力负载,其他负载可忽略。FW工作负载是在工作过程中由于机器特定的工作情况而产生的负载,对于金属切削机床液压系统来说,沿液压缸轴线方向的切削力即为工作负载,即Ft=120000N阻力负载Ff阻力负载主要是工作台的机械摩擦阻力,分为静摩擦阻力和动摩擦阻力两F,则f静摩擦阻力F 0.2220004400Nfs动摩擦阻力F 0.1220002200Nfd惯性负载最大惯性负载取决于移动部件的质量和最大加速度,其中最大加速度可通过工作台最大移动速度和加速时间进行计算。已知启动换向时间为,工作台最大移动速度,即快进、快退速度为min,因此惯性负载可表示为Δv 22000 5mΔt

9.81

600.2N934.420N如果忽略切削力引起的颠覆力矩对导轨摩擦力的影响,并设液压缸的机械效率w=,根据上述负载力计算结果,可得出液压缸在各个工况下所受到的负载力和液压缸所需推力情况,如表1所表1液压缸总运动阶段负载表(单位:N)工况工况启动负载组成FFFF Ffsfd mFFF/N440031342200F/m488934822444fd工进FF F2420026889快退FF22002444反向启动FF44004889加速FF F31343482快退FF22002444制动FF Ffdtfdtfdfsfdmfdfdm负载图按上面数值绘制,如下图a所示。速度图按已知数值vv1 3

6m/、l1

100mm、l2

60mm、快退行程l3

ll1

160mm和工进速度v20.05m/min绘制,如下图b所示图a负载图b速度图第四章确定液压系统主要参数机床机床机械类型磨床组合机床龙门刨床拉床农业机械小型工程机械建筑机械液压凿岩机工作压力/MPa~23~52~88~1010~18液压机机重型机械械20~32确定液压缸工作压力由表2和表3可知,组合机床液压系统在最大负载约为12000N时宜取3MP。表2按负载选择工作压力负载/KN<55~1010~2020~3030~50>50工作压力/MPa<~1~2~33~44~5≥5系统类型 背压力/MPa简单系统或轻载节流调速系统~回油路带调速阀的系统~回油路设置有背压阀的系统系统类型 背压力/MPa简单系统或轻载节流调速系统~回油路带调速阀的系统~回油路设置有背压阀的系统~用补油泵的闭式回路~回油路较复杂的工程机械回油路较短且直接回油可忽略不计55d/D工作压力/MPa ≤d/D ~~~≥表6按速比要求确定d/D2/12/1d/D2注:1—无杆腔进油时活塞运动速度;2—有杆腔进油时活塞运动速度。计算液压缸主要结构参数由于工作进给速度与快速运动速度差别较大,且快进、快退速度要求相A1

A2

两倍的形式,即dDd=的关系。工进过程中,当孔被钻通时,由于负载突然消失,液压缸有可能会发生前冲的现象,因此液压缸的回油腔应设置一定的背压(通过设置背压阀的方式),选取此背压值为p2=。快进时液压缸虽然作差动连接(即有杆腔与无杆腔均与液压泵的来油连接),但连接管路中不可避免地存在着压降,且有杆腔的压力必须大于无杆腔,估算时取。快退时回油腔中也是有背压的,这时选取背压值=p2工进时液压缸的推力计算公式为F/m式中:F——负载力

Ap1

Ap2

Ap1

(A1

/2)p,2——液压缸机械效率mA1A2p1——液压缸无杆腔压力p2——液压有无杆腔压力因此,根据已知参数,液压缸无杆腔的有效作用面积可计算为F 24200A m

9958.85mm2 1 p p 2 31 2 2液压缸缸筒直径为D 4A1

π112.63mmmm由于有前述差动液压缸缸筒和活塞杆直径之间的关系,d=d=×=GB/T2348—1993对液压缸缸筒内径尺寸和液压缸活塞杆外径D=115mmd=80mm。此时液压缸两腔的实际有效面积分别为:AπD2410382mm21A π(D2-d5360mm22工作台在快进过程中,液压缸采用差动连接,此时系统所需要的流量为q 快进 1

-Av2

30.13Lmin工作台在快退过程中所需要的流量为q Av快退 2

32.16Lmin工作台在工进过程中所需要的流量为q=A1×v2L/min根据上述液压缸直径及流量计算结果,进一步计算液压缸在各个工作阶段中的压力、流量和功率值如下计算液压缸各工作阶段的工作压力、流量和功率设快进、快退时,回油腔压力Δp=,p2=1.快进(差动)(1)进油腔压力p1=(F0+ΔpA2)/(A1-A2)p1=(2444+×10^6××10^-4)/)×10^-4=(2)所需流量q=(A1-A2)V1q=()×10^-4×6/min=×10^-2m3/min=min(3)PP1qP=×10^6××10^-2/60(w)=工进p1=(F0p2A2)/A1p1=(26889+×10^6××10^-4)/×10^-4(Pa)=×10^4=;q=A1V2q=×10^-4×=×10^-4m3/min=L/min;Pp1qP=×10^6××10^-3/60(w)=快退(1)p1=(F0+ΔpA1)/A2取Δp=作为快进时的油管中压降Δp,快退时回油腔中有背压p2也可按估算;因此,p1=(2444+×10^6××10^-4)/×10^-4 (Pa)=;q=A2V3q=×10^-4×6(m3/min)=min;输入功率P=p1qP=×10^6××10^-3/60(w)=如表4所示。起动48890————加速3482————快退制动2444————工况推力工况推力压力压力P/MPa输入流量q/输入功P/Kw计算公式2P/MPa1启动48890————pF'Ap AA1212快进加速2482————qA12 1Ppq快速2444p pp121pF'pAA12 21工进26889qAvP12快退P'pAA1qAv2 1223P=p1q表3各工况下的主要参数值注:F'F/m。第五章液压系统方案设计根据组合机床液压系统的设计任务和工况分析,所设计机床对调速范围、低速稳定性有一定要求,因此速度控制是该机床要解决的主要问题。速度的换接、稳定性和调节是该机床液压系统设计的核心。此外,与所有液压系统的设计要求一样,该组合机床液压系统应尽可能结构简单,成本低,节约能源,工作可靠。选用执行元件因系统运动循环要求正向快进和工进,反向快退,且快进,快退速度相A1A2的两倍。速度控制回路的选择工况图表明,所设计组合机床液压系统在整个工作循环过程中所需要的功率较小,系统的效率和发热问题并不突出,因此考虑采用节流调速回路即可。虽然节流调速回路效率低,但适合于小功率场合,而且结构简单、成本低。该机床的进给运动要求有较好的低速稳定性和速度-负载特性,因此有三种速度控制方案可以选择,即进口节流调速、出口节流调速、限压式变量泵加调速阀的容积节流调速。钻镗加工属于连续切削加工,加工过程中切削力变化不大,因此钻削过程中负载变化不大,采用节流阀的节流调速回路即可。但由于在钻头钻入铸件表面及孔被钻通时的瞬间,存在负载突变的可能,因此考虑在工作进给过程中采用具有压差补偿的进口调速阀的调速方式,且在回油路上设置背压阀。由于选定了节流调速方案,所以油路采用开式循环回路,以提高散热效率,防止油液温升过高。从工况图中可以清楚地看到,在这个液压系统的工作循环内,液压要求油源交替地提供低压大流量和高压小流量的油液。而快进快退所需的时间t和工1进所需的时间t2

分别为t(l1

/v)(l1

/v)[(0.1)/(6)(0.16)/6)]*60s=3t2l2/v2[(60)/(50)]*60s72st亦即是2

=因此从提高系统效率、节省能量角度来看,如果选用单个定量t1泵作为整个系统的油源,液压系统会长时间处于大流量溢流状态,从而造成能量的大量损失,这样的设计显然是不合理的。如果采用一个大流量定量泵和一个小流量定量泵双泵串联的供油方式,由双联泵组成的油源在工进和快进过程中所输出的流量是不同的,此时液压系统在整个工作循环过程中所需要消耗的功率估大,除采用双联泵作为油源外,也可选用限压式变量泵作油源。但限压式变量泵结构复杂、成本高,且流量突变时液压冲击较大,工作平稳性差,最后确定选用双联液压泵供油方案,有利于降低能耗和生产成本,如图3所示。图3双泵供油油源选择快速运动和换向回路根据本设计的运动方式和要求,采用差动连接与双泵供油两种快速运动回路来实现快速运动。即快进时,由大小泵同时供油,液压缸实现差动连接。本设计采用二位二通电磁阀的速度换接回路,控制由快进转为工进。与采用行程阀相比,电磁阀可直接安装在液压站上,由工作台的行程开关控制,管路较简单,行程大小也容易调整,另外采用液控顺序阀与单向阀来切断差动油路。因此速度换接回路为行程与压力联合控制形式。速度换接回路的选择所设计多轴钻床液压系统对换向平稳性的要求不高,流量不大,压力不高,所以选用价格较低的电磁换向阀控制换向回路即可。为便于实现差动连接,选用三位五通电磁换向阀。为了调整方便和便于增设液压夹紧支路,应考虑选用Y型中位机能。minL/min的液压冲击,选用双作用叶片泵双泵供油,调速阀进油节流阀调速的开式回路,溢流阀做定压阀。为了换速以及液压缸快退时运动的平稳性,回油路上设置背压阀,初定背压值Pb=。a.换向回路 b.速度换接回图4换向和速度切换回路的选择组成液压系统原理图选定调速方案和液压基本回路后,再增添一些必要的元件和配置一些辅助性油路,如控制油路、润滑油路、测压油路等,并对回路进行归并和整理,就可将液压回路合成为液压系统,即组成如图5所示的液压系统图。图5液压系统图为便于观察调整压力,在液压泵的进口处,背压阀和液压腔进口处设置测压点,并设置多点压力表开关,这样只需一个压力表即能观察各压力。要实现系统的动作,即要求实现的动作顺序为:启动→加速→快进→工进→快退→停止。则可得出液压系统中各电磁铁的动作顺序如表5所示。表中“+”号表示电磁铁通电或行程阀压下;“—”号表示电磁铁断电或行程阀复位。表5电磁铁的动作顺序表系统图的原理快进快进如图所示,按下启动按钮,电磁铁1YA通电,由泵输出地压力油经2三位五通换向阀的左侧,这时的主油路为:102(1YA得电)→3压缸左腔。2(1YA得电)→63→液压缸左腔。由此形成液压缸两腔连通,实现差动快进,由于快进负载压力小,系统压力低,变量泵输出最大流量。工进3YA通电,二位二通换向阀将通路切断,这41515的开口相适应,故进给量大小由调15调节,其主油路为:102(1YA得电)→4→调速15→液压缸左腔。287箱。死挡铁停留当滑台完成工进进给碰到死铁时,滑台即停留在死挡铁处,此时液压缸左腔的压力升高,使压力继电器14发出信号给时间继电器,滑台停留时间由时间继电器调定。快退1YA、3YA断电,2YA2压力下降,变量泵输出流量又自动恢复到最大,滑快速退回,其主油路为:102(2YA得电)→52(右位)→油箱。5.原位停止2YA断2直接回油箱,泵在低压下卸荷。第六章液压元件的选择确定液压泵本设计所使用液压元件均为标准液压元件,因此只需确定各液压元件的主要参数和规格,然后根据现有的液压元件产品进行选择即可。(1)计算液压泵的最大工作压力由于本设计采用双泵供油方式,根据液压系统的工况图,大流量液压泵只需在快进和快退阶段向液压缸供油,因此大流量泵工作压力较低。小流量液压泵在快速运动和工进时都向液压缸供油,而液压缸在工进时工作压力最大,因此对大流量液压泵和小流量液压泵的工作压力分别进行计算。根据液压泵的最大工作压力计算方法,液压泵的最大工作压力可表示为液压缸最大工作压力与液压泵到液压缸之间压力损失之和。对于调速阀进口节流调速回路,选取进油路上的总压力损失p0.8MPa与最大工作压力的压差为,则小流量泵的最高工作压力可估算为P 0.84.3MPap1大流量泵只在快进和快退时向液压缸供油,图4表明,快退时液压缸中的工作压力比快进时大,如取进油路上的压力损失为,则大流量泵的最高工作压力为:P 2.118MPap2(2)计算总流量3表明,在整个工作循环过程中,液压油源应向液压缸提供的最大流L/min的计算,则液压油源所需提供的总流量为:q 1.130.13Lmin33.143LminpL/min3L/minmin。据据以上液压油源最大工作压力和总流量的计算数值,因此选取PV2R12 6/206mL/r,大泵的排量为20mL/r,若取液压泵的容积效率 =,则当泵的转速n =960r/min时,液压泵v p的实际输出流量为q 209600.91000Lmin22.464Lminp由于液压缸在快退时输入功率最大,这时液压泵工作压力为、流量为min。取泵的总效率p

0.75,则液压泵驱动电动机所需的功率为:pqP p p

2.118

kW1.514kW 600.75p根据上述功率计算数据,此系统选取Y100L-6型电动机,其额定功率P1.5kW,额定转速nn

960rmin。确定其它元件及辅件确定阀类元件及辅件根据系统的最高工作压力和通过各阀类元件及辅件的实际流量,查阅产品样本,选出的阀类元件和辅件规格如表6所列。表6液压元件规格及型号1双联叶片泵—PV2R12-6/26qn/L/min(6+20)16/14—2三位五通电液换向阀3635DY63<3行程阀3622C-63(B)63<4调速阀<1Q-10(B)~—5单向阀36I-63(B)636单向阀36637液控顺序阀36XY-63(B)63~8背压阀B-10(B)10—9溢流阀36Y-63(B)63—10单向阀36I-63(B)63<11滤油器42wu-63×10063—<12压力表开关—KF3-E3B 3测点—16—13单向阀36I-63(B)6314压力继电器—DP1-63(B)—0—序号元件名称大流量q/L/min序号元件名称大流量q/L/min型号规格额定流 额定压力量 Pn/MPa额定压降Pn/MPa确定油管在选定了液压泵后,液压缸在实际快进、工进和快退运动阶段的运动速9所列。流量、速度输入流量/流量、速度输入流量/L.min1快进qAA)工进快退1112q 0.52=1qqp=1排出流量/L.min1q (Aq)/A=2211q (Aq)/A=2211q (Aq)/A=2112运动速度/m.min1vqp/(AA)=112v q/A=21 1v q/A=31 2由表9可以看出,液压缸在各阶段的实际运动速度符合设计要求。910推荐的管道内允许速度取=4m/s,由式计算得与液压缸无杆腔和有杆腔相连的油管内径分别为为了统一规格,按产品样本选取所有管子均为内径20mm、外径28mm的10号冷拔钢确定油箱油箱的容量按式估算,当取为7时,求得其容积为Vq 151.2L,按pJB/T7983-1999规定,取标准值V=250L。第七章液压系统性能验算验算系统压力损失由于系统管路布置尚未确定,所以只能估算系统压力损失。估算时,首先确定管道内液体的流动状态,然后计算各种工况下总的压力损失。快进滑台快进时,液压缸通过电液换向阀差动连接。在进油路上,油液通过单1023杆腔。在进油路上,压力损失分别为22 22.46 46.43P[0.2( )20.5( )20.3( )2]MPV 63 80 63 a(0.0240.0390.163)MPa

0.226MPa在回油路上,压力损失分别为22.46

23.97

46.43ppp [0.5( )20.2( )20.3( )2]MP1 2 80 63 63 a(0.0390.0280.162)MPa

0.229MPa将回油路上的压力损失折算到进油路上去,便得出差动快速运动时的总的压力损失工进24无杆腔,在调速阀4处的压力损失为。在回油路上,油液通过电液换向阀2878的压力损失为。因此这时液压缸回油腔的压力P2为0.27 46.43p [0.5( )20.50.3( )2]MP0.663MP2 80 63 a a可见此值小于原估计值。故可按表7中公式重新计算工进时液压缸进油腔压力P1,即F'pAp 2 2

268890.53810625.12104MP

3.797MP1 A 65104106 a a1此值与表7中数值相近。考虑到压力继电器的可靠动作要求压差pe

0.5MPa

,故溢流阀9的调压pP1A

pP1A应为

p1

pe

[3.7970.5(

0.580

)20.50.5]MPa

4.797MPa快退滑台快退时,在进油路上,油液通过单向阀10、电液换向阀25213p

[0.2(

22 23.95 )2 0.5 ( )2

0.06MPV1箱。因此进油路上总压降为

63 80 a a此值远小于估计值,因此液压泵的驱动电动机的功率是足够的。回油路上总压降为55.89

55.89

55.89p [0.2( )20.5( )20.2( )2]MP0.559MPV2 63 80 63 a a7Pp应为p pp (2.240.06)2.30MPP 1 V1 a此值是调整液控顺序阀7的调整压力的主要参考数据。油液温升验算液压传动系统在工作时,有压力损失、容积损失和机械损失,这些损失所消耗的能量多数转化为热能,使油温升高,导致油的粘度下降、油液变质、机般机床25~30℃;数控机床25℃;粗加工机械、工程机械和机车车辆35~40℃。液压系统的功率损失使系统发热,单位时间的发热量(kW)可表示为PP1 2式中P——系统的输入功率(即泵的输入功率)(kW);12P——系统的输出功率(即液压缸的输出功率)(kW)。2若在一个工作循环中有几个工作阶段,则可根据各阶段的发热量求出系统的平均发热量t 2tt t1

60601.5

97.56%对于本次设计的组合机床液压系统,其工进过程在整个工作循环中所占时间比例达95%因此系统发热和油液温升可用工进时的发热情况来计算。工进时液压缸的有效功率(即系统输出功率)为PF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论