


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
状态空间表示法状态空间表示是一种基于解答空间的问题表示和求解方法,它是以状态和操作符为基础的。在利用状态空间图表示时,从某个初始状态开始,每次加一个操作符,递增地建立起操作符的试验序列,直到达到目标状态为止。由于状态空间法需要扩展过多的节点,容易出现“组合爆炸”,因而只适用于表示比较简单的问题。状态空间是控制工程中的一个名词。状态是指在系统中决定系统状态的最小数目的变量的有序集合。而所谓状态空间则是指该系统的全部可能状态的集合。简单来说,状态空间可以视为一个以状态变量为坐标轴的空间,因此系统的状态可以表示为此空间中的一个向量。一个实际的物理系统通常以微分算子方程P(D)Z(t)=Q(D)u(t)Y(t)=R(D)Z(t)+H(D)u(t)来描述。在一般控制原理中基于系统(2T)的传递函数W(D)=R(D)P-1(D)Q(D)+H(D)借助于各种图解法,比如根轨图或乃氏图等来实现控制系统的分析与设计。考虑到系统的相互耦合其传递函数相当复杂,有时为了简单,在定性分析中略去相互耦合,实现系统的近似分析。然而,现代控制理论是基于系统的等效状态空间表示X=AX+BuY=CX+Eu
借助于数字计算机来实现系统的分析与设计,从而避免了一般控制理论中的弊病,实现了系统分析与设计的数值计算程序化。相应于系统的传递函数为W(D)=C(DI-A)-tB+E在研究中,通常假设E=0,这样并不影响所研究的问题的实质.那么W(D)=C(DI-A)-IBO=色注意上面式子中,一必为微分算子,P(D),R(D),Q(D)和H(D)是关于D的适当阶次的多项式阵,Z(t)为系统的ml维部分状态,x(t)为n维状态矢量,y(t)为P维输出矢量,u(t)为q维输入矢量,(5)式还可表示成W(D)=B(DI—A)展下面扼要介绍三种状态空间表示法W(D)=B(DI—A)展状态空间表达式由状态方程和输出方程构成,在状态空间中对控制系统作完整表述的公式。在经典控制理论中,对一个线性定常系统,可用常微分方程或传递函数加以描述,可将某个单变量作为输出,直接和输入联系起来。实际上系统除了输出量这个变量之外,还包含有其它相互独立的变量,而微分方程或传递函数对这些内容的中间变量是不便描述的,因而不能包含系统的所有信息。显然,从能否完全揭示系统的全部运动状态来说,用微分方程或传递函数来描述一个线性定常系统有其不足之处。在用状态空间法分析系统时,系统的动态特性是用由状态变量构成的一阶微分方程组来描述的。它能反映系统的全部独立变量的变化,从而能同时确定系统的全部内部运动状态,而且还可以方便地处理初始条件。这样,在设计控制系统时,不再只局限于输入量、输出量、误差量,为提高系统性能提供了有力的工具。加之可利用计算机进行分析设计及实时控制,因而可以应用于非线性系统、时变系统、多输入一多输出系统以及随机过程等。方程式状态方程和输出方程总和起来,构成一个系统完整的动态描述称为系统的状态空间表达式。在经典控制理论中,用指定某个输出量的高阶微分方程来描述系统的动态过程。同一系统中,状态变量选取的不同,状态方程也不同。从理论上说,并不要求状态变量在物理上一定是可以测量的量,但在工程实践上,仍以选取那些容易测量的量作为状态变量为宜,因为在最优控制中,往往需要将状态变量作为反馈量。设单输入一单输出定常系统,其状态变量为①L①2,…,Xn,用矢量矩阵表示时的状
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 负载测试工具的选择与应用试题及答案
- 2025年中国变速V带行业市场前景预测及投资价值评估分析报告
- 抖音网红代言合作内容制作与推广协议
- 智能手机摄像头模组研发与市场推广合作合同
- 拓展产业链畜牧养殖场承包经营与饲料加工合同
- 贵重物品物流保险赔偿协议
- 教育培训机构课程推广与教育投资合作协议
- 金融理财产品风险控制协议追加条款
- 跨国商标保护与维权合作协议
- 2025届小学毕业典礼主持词-剩下的话留给盛夏
- 江苏有限空间作业安全操作规范DB32∕T-3848-2020
- 《中医美容》课件
- 10.2事件的相互独立性 说课课件高一下学期数学人教A版(2019)必修第二册
- 民办学校档案管理制度
- 工业固体废弃物的资源化处理
- DB11 637-2015 房屋结构综合安全性鉴定标准
- 教学评一体化含义
- 24秋国家开放大学《马克思主义基本原理》专题测试参考答案
- 下月监理工作计划模板
- 科技查新报告样例
- 2024株洲市中考地理试题
评论
0/150
提交评论