信息学竞赛中问题求解常见题分析(排列组合)_第1页
信息学竞赛中问题求解常见题分析(排列组合)_第2页
信息学竞赛中问题求解常见题分析(排列组合)_第3页
信息学竞赛中问题求解常见题分析(排列组合)_第4页
信息学竞赛中问题求解常见题分析(排列组合)_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

信息学竞赛中问题求解常见题分析排列组合问题一、知识点:分类计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有m]种不同的方法,在第二类办法中有m2种不同的方法, ,在第n类办法中有mn。种不同的方法,那么完成这件事共有N=m]+m2+•••+mn。种不同的方法。分步计数原理:做一件事情,完成它需要分成n个步骤,做第一步有m]种不同的方法,做第二步有m2种不同的方法, ,做第n步有mn种不同的方法,那么完成这件事有N=m]*m2*・・・mn。种不同的方法。排列的概念:从n个不同元素中,任取m(mWn)个元素(这里的被取元素各不相同),按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。排列数的定义:从n个不同元素中,任取m(mWn)个元素的所有排列的个数叫做从n个元素中取出m个元素的排列数,用符号Am表示。n排列数公式:Am=n(n-1)(n-2)—(n-m+1)(m,n^N,mWn)n阶乘:n!表示正整数l到n的连乘积,叫做n的阶乘规定0!=1。n!排列数的另一个计算公式:Am=-n (n—m)!组合的概念:一般地,从n个不同元素中取出m(mWn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.组合数的概念:从n个不同元素中取出m(mWn)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号Cm表示.nAm n(n—1)(n—2)...(n—m+1) n!组合数公式:Cm=—= ,或Cm= (n,m^N,n Am m! n m!(n—m)!m且mWn)组合数的性质1:Cm=Cn-m,规定:C0:=1;2:Cm=Cm+Cm—1。n n n n+1 n n圆排列由A{a1,a2,a3..an}的n个元素中,每次取出r个元素排在一个圆环上,叫做一个圆排列(或叫环状排列)。圆排列有三个特点:(i)无头无尾;(ii)按照同一方向转换后仍是同一排列;(iii)两个圆排列只有在元素不同或者元素虽然相同,但元素之间的顺序不同时,才是不同的圆排列.定理:在A={a,,a2,a3..}的n个元素中,每次取出r个不同的元素进行圆排列,圆2 3an排列数为。r13.可重排列允许元素重复出现的排列,叫做有重复的排列。在m个不同的元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序那么第一、第二 第n位是的选取元素的方法都是m种,所以从m个不同的元素中,每次取出n个元素的可重复的排列数为时mn。14.不尽相异元素的全排列如果n个元素中,有P]个元素相同,又有p2个元素相同,…,又有ps个元素相同(P]+P2+…+psWn),这n个元素全部取的排列叫做不尽相异的n个元素的全排列,它的排列数是n!!。p!p!...p!12s二、解题思路:排列组合题的求解策略1.排除:对有限条件的问题,先从总体考虑,再把不符合条件的所有情况排除,这是解决排列组合题的常用策略。2.分类与分步:有些问题的处理可分成若干类,用加法原理,要注意每两类的交集为空集,所有各类的并集是全集;有些问题的处理分成几个步骤,把各个步骤的方法数相乘,即得总的方法数,这是乘法原理.3.对称思想:两类情形出现的机会均等,可用总数取半得每种情形的方法数。4.插空:某些元素不能相邻或某些元素在特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后将有限制条件的元素按要求插入到排好的元素之间。5.捆绑:把相邻的若干特殊元素“捆绑”为一个“大元素”,然后与其他“普通元素”全排列,然后再“松绑”,将这些特殊元素在这些位置上全排列。6.隔板模型:对于将不可辨的球装入可辨的盒子中,求装的方法数,常用隔板模型。如将12个完全相同的球排成一列,在它们之间形成的11个缝隙中任意插入3块隔板,把球分成4堆,分别装入4个不同的盒子中的方法数应为C3.,这也就是方程a+b+c+d=12的正整数解的个数。11解排列组合问题:首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系,还要考虑是“有序的”还是“无序的”,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下几种常用的解题方法。三、讲解范例:1.相邻问题——整体捆绑法例1.7名学生站成一排,甲、乙必须站在一起,有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有A6*A2=1440种。62捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其他元素一起作排列,同时要注意合并元素内部也可以作排列.一般地:n个人站成一排,其中某m个人相邻,可用捆绑法解决,共有An-m+1.Am种排法。n—m+1m练习:5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?分析:此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题。解:因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有P6种排法,6其中女生内部也有P3种排法,根据乘法原理,共有P6・P3种不同的排法。3 6 32.不相邻问题——选空插入法例2.7名学生站成一排,甲乙互不相邻,有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:A5*A2=360056种。插入法:对于某两个元素或者几个元素要求不相邻的问题,可以用插入法.即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素的空档之中即可。若个人站成一排,其中m个人不相邻,可用插空法解决,共有An-m*Am种排法。n-m n一m+1练习:学校组织老师学生一起看电影,同一排电影票12张,8个学生,4个老师,要求老师在学生中间,且老师互不相邻,共有多少种不同的坐法?分析:此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待,所涉及问题是排列问题。解:先排学生共有P8种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个8空档,共有P4种选法。根据乘法原理,共有P4的不同坐法为P8*P4种。7 7 8 73.复杂问题——总体排除法或排异法有些问题直接法考虑比较难比较复杂,或分类不清或多种时,而它的反面往往比较简捷,可考虑用“排除法”,先求出它的反面,再从整体中排除。解决几何问题必须注意几何图形本身对其构成元素的限制。例3•正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有 个。解:从7个点中取3个点的取法有C3种,但其中正六边形的对角线所含的中心和顶点三点共线不能7组成三角形,有3条,所以满足条件的三角形共有C3-3=32个。7例4.从43人中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?分析:此题若是直接去考虑的话,就要将问题分成好几种情况,这样解题的话,容易造成各种情况遗漏或者重复的情况.而如果从此问题相反的方面去考虑的话,不但容易理解,而且在计算中也是非常地简便。解:43人中任抽5人的方法C5种,正副班长,团支部书记都不在内的抽法有C5乙种,所以正副班43 40长,团支部书记至少有1人在内的抽法有C5-C5种。43 404.特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。例4. 1名老师和4名获奖学生排成一排照相留念,若老师不排在两端,则共有不同的排応种。解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中问三个位置上任选一个位置,有A3种,而其余学生的排法有A4:种,所以共有A1・A4:=72种不同的排法。4 3 4例5.乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有—种。解:由于第一、三、五位置特殊,只能安排主力队员,有A3种排法,而其余7名队员选出2名安排3在第二、四位置,有A2种排法,所以不同的出场安排共有A3.A2=252种。7 3 7多元问题——分类讨论法对于元素多,选取情况多的问题,可按要求进行分类讨论,最后总计。例6.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( )A.42 B.30 C.20 D.12解:增加的两个新节目,可分为相邻与不相邻两种情况:1.不相邻:共有a2:种;2.相邻:共有6A2A1:种。故不同插法的种数为:A2+A2A1=42,故选A。6626混合问题——先选后排法对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略.例7.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有()C4C4C4A.C4C4C4 B。3C4C4C4 C.C4C4P3 D.128_1284 1284 1283 A33C4C4C4解:本试题属于均分组问题。则12名同学均分成3组共有12/4种方法,分配到三个不同的路口A33的不同的分配方案共有C4C4C4种,故选A.1288例8.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有()A.24种B.18种c.12种D.6种解:先选后排,分步实施。由题意,不同的选法有C2种,不同的排法有A1-A2故不同的种植方法共3 2有C2.A1-A2=18,故应选B。3 3 2相同元素分配——档板分隔法例9.把10本相同的书发给编号为1,2,3的三个学生阅览室,每个阅览室分得的书的本数不小于其编号数,试求不同分法的种数。请用尽可能多的方法求解,并思考这些方法是否适合更一般的情况?本题考查组合问题。解:先让2,3号阅览室依次分得1本书、2本书;再对余下的7本书进行分配,保证每个阅览室至少得一本书,这相当于在7本相同书之间的6个“空档”内插入两个相同“I”(一般可视为“隔板”),共有C2种插法,即有15种分法。6转化法对于某些较复杂的或较抽象的排列组合问题,可以利用转化思想,将其化归为简单的、具体的问题来求解。例10.高二年级8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种?分析:此题若直接去考虑的话,就会比较复杂。但如果我们将其转化为等价的其他问题,就会显得比较清楚,方法简单,结果容易理解。解:此题可以转化为:将12个相同的白球分成8份,有多少种不同的分法问题。因此须把这12个白球排成一排,在11个空档中放上7个相同的黑球,每个空档最多放一个,即可将白球分成8份,显然有C711种不同的放法,所以名额分配方案有C7种。11总之,排列、组合应用题的解题思路可总结为:排组分清,加乘明确;有序排列,无序组合;分类为加,分步为乘。具体说,解排列组合的应用题,通常有以下途径:以元素为主体,即先满足特殊元素的要求,再考虑其他元素。以位置为主体,即先满足特殊位置的要求,再考虑其他位置。先不考虑附加条件,计算出排列或组合数,再减去不合要求的排列组合数。1.(NOIP2002)在书架上放有编号为1,2,…,n的n本书。现将n本书全部取下然后再放回去,当放回去时要求每本书都不能放在原来的位置上。例如:n=3时: 原来位置为:123 放回去时只能为:3l2或231这两种问题:求当n=5时满足以上条件的放法共有多少种?(不用列出每种放法)解析:这是一道排列组合中的计数问题,有关这方面的基础知识在前几期已经有老师阐述得比较明确笔者在此不再赘述,只想对本题谈一下笔者的拙见,希望能对初学者有点帮助。因为书是有编号的,故书是5本不同的书,我们分别记为1,2,3,4,5,有5个空位供放这5本书,只要我们将这5本书放到这5个空位,我们的任务就算完成了。由于这5本书放回去的时候每本书不能放回原来的位置,我们可以将这5个位置分别记为1,2,3,4,5号位,因此我们放书的时候就有一个先后顺序问题:步我们可以从这5本不同的书中任意选出一本书(不妨选2号书),放到除了2号位之外的四个位置中的任何一个位置,有C1种放置方法,不妨设放到3号位上如图所示:42号书1号位2号位3号位4号位5号位步接下来我们该放3号书,这时候有两类情况:I类:3号书恰好放到2号位置上,这样剩下的3本书的排列方法就如同题干上所说的n=3的情况,有C1种放法,如图所示:23号书2号书l号位2号位3号位4号付5号位II类:3号书不放在2号位,而是放在除2号位之外的三个位置中的任意一个位置上有Ci种放法,不3妨设放到1号位,接下来该放1号书,我们从剩余的3个空位中选一个放1号书,有Ci种排法,不妨设3放到4号位,则剩余的两本书只有一种排法。3号书2号书1号书l号位2号位3号位4号付5号位综上两步将5本书放到符合条件的5个空位的排列种数有:C1(C1C1C1)=4X(2+3X3)=44(种)4 2 33此题的难点就在于第②步的分类上,如果搞清这一点,问题就好解决了。2.(NOIP2004)由3个a,5个b和2个c构成的所有字符串中,包含子串“abc"的共有()个。A.40320 B.39600 C.840 D.780 E.60解析:3个a,5个b,2个c共10个字符,将“a”、“b”、“c"组成一个原子团(特殊字符)“abc”与剩下的7个字符看成共8个字符的排列,这样有8个空位置可供它们选择,如果这8个字符都放到这8个位置,任务就算完成。具体放法如下:步先放“ahc”:从8个位置中任选一个放“abc”有C1种放法;8步再放“a":、从剩余的7个位置中选2个放“a”有C2:种放法;7步接着放“b”:从剩下的5个位置中选4个放“b”有C;种放法;步最后放“C”:有一种放法。综上共有=C1C2C4=8X21X5=840(种)上述放法中有包含两个“ahc”字符的情况,这些情况都有重复8 7 5计算,应该除去。这种情况有:从10个字符抽出两组“ahc”后还剩余4个字符,与这两个原子团(特殊字符)共同组成6个元素,有6个空位置可供选择,将这6个元素放到这6个空位置就算完成任务。具体做法如下:步放“abc”:从6个位置中选2个放“abe”有C2:种放法;6步放“a":从剩下的4个位置中选一个放“a”有C1:种放法;4步放“b”:从剩下的3个空位放“c”有C3:种放法;3综上共有C6C4C3=6X5/(2X1)X4X1=15X4=60(种)。由上知,符合条件的包含子串“ahc”的个数有OOC4C2OC3;=840—60=780(个),故答案选D8 7 5 6 4 3说明:对这一类题目来说,字符(串)“abc”、“a"、“b”、“c"它们在放的时候没有先后顺序,先放谁,后放谁都一样,计算结果都是一样的,并非一定按上面顺序,有兴趣的同

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论