




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020-2021学年河北省唐山市路北区九年级(上)开学数学试卷一、选择题(共14小题).1.(2分)下列是最简二次根式的是()A.D.B.C.2.(2分)在Rt△ABC中,斜边AB=3,则AB2+AC2+BC2=()A.93.(2分)下面哪个点在函数y=x+1的图象上()A.(2,1)C.(2,0)B.18C.10D.24B.(﹣2,1)D.(﹣2,0)4.(2分)下列各组线段a、b、c中不能组成直角三角形的是()A.a=7,b=24,c=25C.a=,b=1,c=B.a=40,b=50,c=60D.a=,b=4,c=55.(2分)下列等式成立的是()A.()2=3B.=﹣3C.=3D.(﹣)2=﹣36.(2分)一次函数y=kx+b(k为常数且k≠0)的图象如图所示,则使y>0成立的x的取值范围为()A.x>﹣2B.x<﹣2C.﹣2<x<0D.x≥﹣27.(2分)下列条件不能判定四边形ABCD是平行四边形的是()A.AB∥CD,AD∥BCC.AB=CD,AD=BCB.∠A=∠C,∠B=∠DD.AB∥CD,AD=BC8.(2分)一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6B.7C.8D.99.(2分)用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()A.C.B.D.10.(2分)如图,菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()A.52B.48C.40D.2011.(2分)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5B.4.2C.5.8D.712.(2分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°13.(2分)小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A.1和2之间B.2和3之间C.3和4之间D.4和5之间14.(2分)同一平面直角坐标系中,一次函数y=mx+n与y=nx+m(mn为常数)的图象可能是()A.B.C.D.二、填空题(共4个小题;每小题3分,共12分.)15.(3分)函数y=中,自变量x的取值范围是.16.(3分)在平面直角坐标系中,以原点为对称中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为.17.(3分)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为.18.(3分)如图,在▱ABCD中,AB=10,AD=6,AC⊥BC.则BD=.三、解答题(本题共8道题,满分60分)19.(8分)计算.(1)(4﹣3)÷2;(2)(﹣)(+)+(2﹣3)2.20.(4分)已知x=﹣1,求代数式x2+3x﹣1的值.21.(6分)如图,△ABC中,∠C=90°,AC=4,BC=8.(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.22.(8分)某学校打算招聘英语教师.对应聘者进行了听、说、读、写的英语水平测试,其中甲、乙两名应聘者的成绩(百分制)如下表所示.应聘者甲听9583说8893读8392写9590乙(1)如果学校想招聘说、读能力较强的英语教师,听、说、读、写成绩按照2:4:3:1的比确定,若在甲、乙两人中录取一人,请计算这两名应聘者的平均成绩(百分制).从他们的成绩看,应该录取谁?(2)学校按照(1)中的成绩计算方法,将所有应聘者的最后成绩绘制成如图所示的频数分布直方图(每分组数段均包含左端数值,不包含右端数值,如最左边一组分数x为:70≤x<75).①参加该校本次招聘英语教师的应聘者共有人(直接写出答案即可).②学校决定由高分到低分录用3名教师,请判断甲、乙两人能否被录用?并说明理由.23.(7分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.24.(7分)如图,已知四边形ABCD中,对角线AC、BD相交于点O,且OA=OC,OB=OD,过O点作EF⊥BD,分别交AD、BC于点E、F.(1)求证:△AOE≌△COF;(2)判断四边形BEDF的形状,并说明理由.25.(9分)如图,在平面直角坐标系中,直线y=﹣x+3过点A(5,m)且与y轴交于点B,把点A向左平移2个单位,再向上平移4个单位,得到点C.过点C且与y=2x平行的直线交y轴于点D.(1)求直线CD的解析式;(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围.26.(11分)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.参考答案一、选择题(共14小题).1.(2分)下列是最简二次根式的是()A.B.C.D.解:(A)原式=2,故A不是最简二次根式;(C)原式=,故C不是最简二次根式;(D)当m≥0时,原式=m,当m<0时,原式无意义,故D不是最简二次根式;故选:B.2.(2分)在Rt△ABC中,斜边AB=3,则AB2+AC2+BC2=()A.9B.18C.10D.24解:∵Rt△ABC中,AB为斜边,∴AC2+BC2=AB2,∴AB2+AC2+BC2=2AB2=2×32=18.故选:B.3.(2分)下面哪个点在函数y=x+1的图象上()A.(2,1)B.(﹣2,1)C.(2,0)D.(﹣2,0)解:(1)当x=2时,y=2,(2,1)不在函数y=x+1的图象上,(2,0)不在函数y=x+1的图象上;(2)当x=﹣2时,y=0,(﹣2,1)不在函数y=x+1的图象上,(﹣2,0)在函数y=x+1的图象上.故选:D.4.(2分)下列各组线段a、b、c中不能组成直角三角形的是()A.a=7,b=24,c=25C.a=,b=1,c=B.a=40,b=50,c=60D.a=,b=4,c=5解:A、72+242=252,故是直角三角形,不符合题意;B、402+502≠602,故不是直角三角形,符合题意;C、()2+12=()2,故是直角三角形,不符合题意;D、42+52=()2,故是直角三角形,不符合题意.故选:B.5.(2分)下列等式成立的是()A.()2=3B.解:()2=3,A正确;=3,B错误;=﹣3C.=3D.(﹣)2=﹣3==3,C错误;(﹣)2=3,D错误;故选:A.6.(2分)一次函数y=kx+b(k为常数且k≠0)的图象如图所示,则使y>0成立的x的取值范围为()A.x>﹣2B.x<﹣2C.﹣2<x<0D.x≥﹣2解:由图象可知,一次函数y=kx+b与x轴交于点(﹣2,0),y随x的增大而减小,故使y>0成立的x的取值范围为是x<﹣2,故选:B.7.(2分)下列条件不能判定四边形ABCD是平行四边形的是()A.AB∥CD,AD∥BCC.AB=CD,AD=BCB.∠A=∠C,∠B=∠DD.AB∥CD,AD=BC解:A、根据两组对边分别平行,是平行四边形可判定四边形ABCD是平行四边形,故此选项不合题意;B、根据两组对角分别相等的四边形是平行四边形可判定四边形ABCD是平行四边形,故此选项不合题意;C、根据两组对边分别相等,是平行四边形可判定四边形ABCD是平行四边形,故此选项不合题意;D、不能判定判定四边形ABCD是平行四边形,故此选项符合题意;故选:D.8.(2分)一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6B.7C.8D.9解:这组数据按照从小到大的顺序排列为:6,7,8,9,9,则中位数为:8.故选:C.9.(2分)用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()A.C.B.D.解:A、由作图可知,AC⊥BD,且平分BD,即对角线平分且垂直的四边形是菱形,正确;B、由作图可知AB=BC,AD=AB,即四边相等的四边形是菱形,正确;C、由作图可知AB=DC,AD=BC,只能得出ABCD是平行四边形,错误;D、由作图可知∠DAC=∠CAB,∠DCA=∠ACB,对角线AC平分对角,可以得出是菱形,正确;故选:C.10.(2分)如图,菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()A.52B.48C.40D.20解:∵菱形ABCD中,BD=24,AC=10,∴OB=12,OA=5,在Rt△ABO中,AB==13,∴菱形ABCD的周长=4AB=52,故选:A.11.(2分)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5B.4.2C.5.8D.7解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选:D.12.(2分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠CAD=45°,∠ACD=90°﹣20°=70°,∴∠ADC=180°﹣45°﹣70°=65°,故选:C.13.(2分)小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A.1和2之间B.2和3之间C.3和4之间D.4和5之间解:由勾股定理得,OB==,∵9<13<16,∴3<<4,∴该点位置大致在数轴上3和4之间.故选:C.14.(2分)同一平面直角坐标系中,一次函数y=mx+n与y=nx+m(mn为常数)的图象可能是()A.B.C.D.解:若m>0,n>0,则一次函数y=mx+n与y=nx+m(mn为常数)都是增函数,且都交y轴的正半轴;若m<0,n>0,则一次函数y=mx+n是减函数,交y轴的正半轴,y=nx+m(mn为常数)是增函数,交y轴的负半轴;若m>0,n<0,则一次函数y=mx+n是增函数,且交y轴负半轴,y=nx+m(mn为常数)是减函数,且交y轴的正半轴;若m<0,n<0,则一次函数y=mx+n与y=nx+m(mn为常数)都是减函数,且都交于y的负半轴;故选:B.二、填空题(本大题共4个小题;每小题3分,共12分.把正确答案填在横线上)15.(3分)函数y=中,自变量x的取值范围是x≥2.解:根据题意得,x﹣2≥0且x≠0,解得x≥2且x≠0,所以,自变量x的取值范围是x≥2.故答案为:x≥2.16.(3分)在平面直角坐标系中,以原点为对称中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为(﹣4,3).解:如图所示,建立平面直角坐标系,点B的坐标为(﹣4,3).故答案为(﹣4,3)17.(3分)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为﹣4≤m≤4.解:∵点M在直线y=﹣x上,∴M(m,﹣m),∵MN⊥x轴,且点N在直线y=x上,∴N(m,m),∴MN=|﹣m﹣m|=|2m|,∵MN≤8,∴|2m|≤8,∴﹣4≤m≤4,故答案为:﹣4≤m≤4.18.(3分)如图,在▱ABCD中,AB=10,AD=6,AC⊥BC.则BD=4.解:∵四边形ABCD是平行四边形,∴BC=AD=6,OB=OD,OA=OC,∵AC⊥BC,∴AC==8,∴OC=4,∴OB==2,∴BD=2OB=4故答案为:4.三、解答题(本题共8道题,满分60分)19.(8分)计算.(1)(4﹣3)÷2;(2)(﹣)(+)+(2﹣3)2.解:(1)原式=2﹣;(2)原式=6﹣5+12﹣12+18=31﹣12.20.(4分)已知x=﹣1,求代数式x2+3x﹣1的值.解:∵x=﹣1,∴x2+3x﹣1=(﹣1)2+3(﹣1)﹣1=3﹣2+1+3﹣3﹣1=.21.(6分)如图,△ABC中,∠C=90°,AC=4,BC=8.(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.解:(1)如图直线MN即为所求.(2)∵MN垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∵AD2=AC2+CD2,∴x2=42+(8﹣x)2,解得x=5,∴BD=5.22.(8分)某学校打算招聘英语教师.对应聘者进行了听、说、读、写的英语水平测试,其中甲、乙两名应聘者的成绩(百分制)如下表所示.应聘者甲听9583说8893读8392写9590乙(1)如果学校想招聘说、读能力较强的英语教师,听、说、读、写成绩按照2:4:3:1的比确定,若在甲、乙两人中录取一人,请计算这两名应聘者的平均成绩(百分制).从他们的成绩看,应该录取谁?(2)学校按照(1)中的成绩计算方法,将所有应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最左边一组分数x为:70≤x<75).①参加该校本次招聘英语教师的应聘者共有30人(直接写出答案即可).②学校决定由高分到低分录用3名教师,请判断甲、乙两人能否被录用?并说明理由.解:(1)==88.6(分),==90.4,∵88.6<90.4,∴应该录取乙.(2)①5+9+10+5+1=30(人),故答案为30.②由频数分布表可知:乙第一名,肯定录取,85≤x<90中有5人,其中只有两人录取,甲的成绩为88.6分,可以确定在这个组,但是不能确定是第几名,所以甲不一定录取.23.(7分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.解:(1)由图象可知:汽车行驶400千米,剩余油量30升,∵行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升)∴加满油时油箱的油量是40+30=70升.(2)设y=kx+b(k≠0),把(0,70),(400,30)坐标代入可得:k=﹣0.1,b=70∴y=﹣0.1x+70,当y=5时,x=650即已行驶的路程的为650千米.24.(7分)如图,已知四边形ABCD中,对角线AC、BD相交于点O,且OA=OC,OB=OD,过O点作EF⊥BD,分别交AD、BC于点E、F.(1)求证:△AOE≌△COF;(2)判断四边形BEDF的形状,并说明理由.【解答】(1)证明:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF.(2)解:结论:四边形BEDF是菱形,∵△AOE≌△COF,∴AE=CF,∵AD=BC,∴DE=BF,∵DE∥BF,∴四边形BEDF是平行四边形,∵OB=OD,EF⊥BD,∴EB=ED,∴四边形BEDF是菱形.25.(9分)如图,在平面直角坐标系中,直线y=﹣x+3过点A(5,m)且与y轴交于点B,把点A向左平移2个单位,再向上平移4个单位,得到点C.过点C且与y=2x平行的直线交y轴于点D.(1)求直线CD的解析式;(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围.解:(1)把A(5,m)代入y=﹣x+3得m=﹣5+3=﹣2,则A(5,﹣2),∵点A向左平移2个单位,再向上平移4个单位,得到点C,∴C(3,2),∵过点C且与y=2x平行的直线交y轴于点D,∴CD的解析式可设为y=2x+b,把C(3,2)代入得6+b=2,解得b=﹣4,∴直线CD的解析式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- ppp项目实施管理制度
- 安全标准化自评管理制度
- 公司行政备用金管理制度
- 单位食堂制度与管理制度
- 教室宿舍卫生管理制度
- 化工厂废气设备管理制度
- 河道应急物资管理制度
- ktv各项安全管理制度
- mcn公司部门管理制度
- 施工现场各项管理制度
- 2023年电池车间MES解决方案
- BSCI验厂全套程序文件
- 2022-2023学年苏教版高一数学新教材教学讲义第4章 指数与对数 单元综合测试卷
- 2023春国开个人与团队管理模拟测试1试题及答案
- 芜湖人教版七年级初一上册地理期末测试题及答案
- 中考说明文考点及答题技巧 【 知识精细梳理 】 中考语文提分必背
- 文化人类学教学大纲
- 地震学基础地震烈度课件
- 认识及预防登革热课件
- 消防救援队伍资产管理系统培训课件
- 《创新创业基础》课程教学成效
评论
0/150
提交评论