人教版九年级上册数学期末考试试题及答案_第1页
人教版九年级上册数学期末考试试题及答案_第2页
人教版九年级上册数学期末考试试题及答案_第3页
人教版九年级上册数学期末考试试题及答案_第4页
人教版九年级上册数学期末考试试题及答案_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版九年级上册数学期末考试试卷一、选择题。(每小题只有一个正确答案)1.下列交通标志中,属于中心对称图形的是()A.B.C.D.2.若x=2是关于x的一元二次方程x2﹣ax=0的一个根,则a的值为()A.1 B.﹣1 C.2 D.﹣23.以下事件属于随机事件的是()A.小明买体育彩票中了一等奖B.2019年是中华人民共和国建国70周年C.正方体共有四个面D.2比1大4.如图,点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,若OA:OA1=1:3,则五边形ABCDE和五边形A1B1C1D1E1的面积比是()A.1:2 B.1:3 C.1:4 D.1:95.如图,BD是⊙O的直径,点A、C在⊙O上,,∠AOB=60°,则∠BDC的度数是()A.60° B.45° C.35° D.30°6.已知点是反比例函数图象上的两点,且,则、的大小关系是()A. B. C. D.7.如图,△ABC中,∠A=70°,AB=4,AC=6,将△ABC沿图中的虚线剪开,则剪下的阴影三角形与原三角形不相似的是()A.B.C.D.8.把二次函数y=﹣(x+1)2﹣3的图象沿着x轴翻折后,得到的二次函数有()A.最大值y=3 B.最大值y=﹣3 C.最小值y=3 D.最小值y=﹣39.如图,已知△ABC中,∠C=90°,AC=BC,把△ABC绕点A逆时针旋转60°得到△AB'C',连接C'B,则∠ABC'的度数是()A.45° B.30° C.20° D.15°10.如图,CD⊥x轴,垂足为D,CO,CD分别交双曲线y=于点A,B,若OA=AC,△OCB的面积为6,则k的值为()A.2 B.4 C.6 D.8二、填空题11.一个不透明的盒子中有4个白球,3个黑球,2个红球,各球的大小与质地都相同,现随机从盒子中摸出一个球,摸到白球的概率是_____.12.二次函数y=﹣x2+bx+c的部分图象如图所示,对称轴是直线x=﹣1,则关于x的一元二次方程﹣x2+bx+c=0的根为_____.13.如图,圆锥的底面半径OB=6cm,高OC=8cm,则该圆锥的侧面积是_____cm2.14.已知一次函数y1=x+m的图象如图所示,反比例函数y2=,当x>0时,y2随x的增大而_____(填“增大”或“减小”).15.已知关于x的方程有两个同号的实数根、,则实数m的取值范围是_______.16.如图,在矩形中,,,以点C为圆心,为半径作,点P是上一个动点,连接交于点T,则的最大值是_________.

三、解答题17.解方程:18.如图,在△ABC中,∠C=90°,CB=6,CA=8,将△ABC绕点B顺时针旋转得到△DBE,使点C的对应点E恰好落在AB上,求线段AE的长.19.为了解学生的艺术特长发展情况,某校决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)扇形统计图中“戏曲”部分对应的扇形的圆心角为度;(2)若在“舞蹈、乐器、声乐、戏曲”项目中任选两项成立课外兴趣小组,请用列举法求恰好选中“舞蹈、声乐”这两项的概率.20.如图,为的直径,弦的长为.尺规作图:过圆心O作弦的垂线,交弦于点D,交优弧于点E;(保留作图痕迹,不要求写作法)21.如图,将边长为40cm的正方形硬纸板的四个角各剪掉一个同样大小的正方形,剩余部分折成一个无盖的盒子.(纸板的厚度忽略不计).(1)若该无盖盒子的底面积为900cm2,求剪掉的正方形的边长;(2)求折成的无盖盒子的侧面积的最大值.22.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A,B两点,点A的坐标为(﹣1,3),点B的坐标为(3,n).(1)求这两个函数的表达式;(2)点P在线段AB上,且S△APO:S△BOP=1:3,求点P的坐标.23.如图,已知平行四边形,过点的直线交的延长线于,交、于、.(1)若,,,求的长;(2)证明:.24.如图,点A,P,B,C是⊙O上的四个点,∠DAP=∠PBA.(1)求证:AD是⊙O的切线;(2)若∠APC=∠BPC=60°,试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)在第(2)问的条件下,若AD=2,PD=1,求线段AC的长.25.已知:如图,在中,,,,将对折,使点C的对应点H恰好落在直线上,折痕交于点O,以点O为坐标原点,所在直线为x轴建立平面直角坐标系.

(1)求过A、B、O三点的抛物线解析式;(2)若在线段上有一动点P,过点P作x轴的垂线,交抛物线于M,连接、,求的面积的最大值;(3)若点E在抛物线上,点F在对称轴上,且以O、A、E、F为顶点的四边形为平行四边形,求点E的坐标.参考答案1.D【分析】根据中心对称图形的定义和交通标志的图案特点即可解答.【详解】解:A、不是中心对称图形,故不符合题意;

B、不是中心对称图形,故不符合题意;

C、不是中心对称图形,故不符合题意;

D、是中心对称图形,故本选项正确.

故选:D.【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.C【分析】将x=2代入原方程即可求出a的值.【详解】将x=2代入x2﹣ax=0,∴4﹣2a=0,∴a=2,故选:C.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.3.A【分析】随机事件是指在一定条件下,可能发生也可能不发生的事件,依据随机事件定义可以作出判断.【详解】A、小明买体育彩票中了一等奖是随机事件,故本选项正确;B、2019年是中华人民共和国建国70周年是确定性事件,故本选项错误;C、正方体共有四个面是不可能事件,故本选项错误;D、2比1大是确定性事件,故本选项错误;故选:A.【点睛】此题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.D【分析】由点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,OA:OA1=1:3,可得位似比为1:3,根据相似图形的面积比等于相似比的平方,即可求得答案.【详解】∵点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,OA:OA1=1:3,∴五边形ABCDE和五边形A1B1C1D1E1的位似比为1:3,∴五边形ABCDE和五边形A1B1C1D1E1的面积比是1:9.故选:D.【点睛】此题考查了位似图形的性质.此题比较简单,注意相似图形的周长的比等于相似比,相似图形的面积比等于相似比的平方.5.D【分析】直接根据圆周角定理求解.【详解】如图,连结OC,∵,∴∠BDC=∠AOB=×60°=30°故选:D【点睛】本题考查了圆周角定理定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.6.B【分析】根据反比例函数系数的正负判断它的增减性.【详解】解:∵反比例函数的系数大于0,∴在第一象限内,y随着x的增大而减小,∵,∴.故选:B.【点睛】本题考查反比例函数的性质,解题的关键是掌握反比例函数的增减性.7.D【解析】试题解析:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;

B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;

C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.

D、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;

故选D.8.C【分析】根据二次函数图象与几何变换,将y换成-y,整理后即可得出翻折后的解析式,根据二次函数的性质即可求得结论.【详解】把二次函数y=﹣(x+1)2﹣3的图象沿着x轴翻折后得到的抛物线的解析式为﹣y=﹣(x+1)2﹣3,整理得:y=(x+1)2+3,所以,当x=﹣1时,有最小值3,故选:C.【点睛】本题考查了二次函数图象与几何变换,求得翻折后抛物线解析式是解题的关键.9.B【分析】连接BB′,延长BC′交AB′于点M;证明△ABC′≌△B′BC′,得到∠MBB′=∠MBA=30°.【详解】如图,连接BB′,延长BC′交AB′于点M;由题意得:∠BAB′=60°,BA=B′A,∴△ABB′为等边三角形,∴∠ABB′=60°,AB=B′B;在△ABC′与△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠MBB′=∠MBA=30°,即∠ABC'=30°;故选:B.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形是解题的关键.10.B【分析】设A(m,n),根据题意则C(2m,2n),根据系数k的几何意义,k=mn,△BOD面积为k,即可得到S△ODC=•2m•2n=2mn=2k,即可得到6+k=2k,解得k=4.【详解】设A(m,n),∵CD⊥x轴,垂足为D,OA=AC,∴C(2m,2n),∵点A,B在双曲线y=上,∴k=mn,∴S△ODC=×2m×2n=2mn=2k,∵△OCB的面积为6,△BOD面积为k,∴6+k=2k,解得k=4,故选:B.【点睛】本题考查了反比例系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.11..【分析】直接利用概率求法,白球数量除以总数进而得出答案.【详解】∵一个不透明的盒子中有4个白球,3个黑球,2个红球,∴随机从盒子中摸出一个球,摸到白球的概率是:.故答案为:.【点睛】此题主要考查了概率公式,正确掌握概率求法是解题关键.12.x1=1,x2=﹣3.【分析】根据二次函数的性质和函数的图象,可以得到该函数图象与x轴的另一个交点,从而可以得到一元二次方程-x2+bx+c=0的解,本题得以解决.【详解】由图象可得,抛物线y=﹣x2+bx+c与x轴的一个交点为(﹣3,0),对称轴是直线x=﹣1,则抛物线与x轴的另一个交点为(1,0),即当y=0时,0=﹣x2+bx+c,此时方程的解是x1=1,x2=﹣3,故答案为:x1=1,x2=﹣3.【点睛】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.13.60π【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:(cm2).故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键.14.减小.【分析】根据一次函数图象与y轴交点可得m<2,进而可得2-m>0,再根据反比例函数图象的性质可得答案.【详解】根据一次函数y1=x+m的图象可得m<2,∴2﹣m>0,∴反比例函数y2=的图象在一,三象限,当x>0时,y2随x的增大而减小,故答案为:减小.【点睛】此题主要考查了反比例函数的性质,以及一次函数的性质,关键是正确判断出m的取值范围.15.【分析】先根据根的判别式求出m的范围,再利用根与系数的关系,由,求出m的范围,取公共部分即可.【详解】解:∵方程有两个实数根,∴,解得,∵两个实数根同号,∴,即,解得.故答案是:.【点睛】本题考查一元二次方程根的判别式和根与系数的关系,解题的关键是熟练运用这两个知识点进行求解.16..【分析】过点A作BD的垂线AG,AG为定值;过点P作BD的垂线PE,只要PE最大即可,进而求出PE最大,即可得出结论.【详解】解:如图,过点A作AG⊥BD于G,

∵BD是矩形的对角线,∴∠BAD=90°,∴BD=,∵,∴,∴AG=,过点P作PE⊥BD于E,∴∠AGT=∠PET,∵∠ATG=∠PTE,∴△AGT∽△PET,∴,∵,要最大,则PE最大,∵点P是⊙C上的动点,∴PE最大为线段PE经过圆心C,∴此时,∵,CP=BC=3,∴;∴最大值为:;故答案为:.【点睛】此题主要考查了矩形的性质,勾股定理,相似三角形的判定和性质,构造出相似三角形是解本题的关键.注意正确得到PE的最大值是解本题的突破口.17.【分析】利用完全平方公式配平方,再利用直接开方法求方程的解即可.【详解】x2−2x+1=6,那么(x−1)2=6,即x−1=±,则.【点睛】本题考查了解一元二次方程的方法,解题的关键是注意使用配方法是要保证不改变原方程.18.4【分析】由勾股定理求出AB=4,由旋转的性质得出BE=BC=6,即可得出答案.【详解】∵在△ABC中,∠C=90°,CB=6,CA=8,∴AB==10,由旋转的性质得:BE=BC=6,∴AE=AB﹣BE=10﹣6=4.【点睛】本题考查了旋转的性质以及勾股定理;熟练掌握旋转的性质是解题的关键.19.(1)28.8;(2)【分析】(1)用喜欢声乐的人数除以它所占百分比即可得到调查的总人数,用总人数分别减去喜欢舞蹈、乐器、和其它的人数得到喜欢戏曲的人数,即可得出答案;(2)先画树状图展示所有12种等可能的结果数,再找出恰好选中“①舞蹈、③声乐”两项活动的结果数,然后根据概率公式计算.【详解】(1)抽查的人数=8÷16%=50(名);喜欢“戏曲”活动项目的人数=50﹣12﹣16﹣8﹣10=4(人);扇形统计图中“戏曲”部分对应的扇形的圆心角为360°×=28.8°;故答案为:28.8;(2)舞蹈、乐器、声乐、戏曲的序号依次用①②③④表示,画树状图:共有12种等可能的结果数,其中恰好选中“①舞蹈、③声乐”两项活动的有2种情况,所有故恰好选中“舞蹈、声乐”两项活动的概率==.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了扇形统计图和条形统计图.20.答案见详解【分析】以点A,点C为圆心,大于AC为半径画弧,两弧的交点和点O的连线交弦AC于点D,交优弧于点E;【详解】解:(1)如图所示:【点睛】本题考查了圆的垂径定理有关知识,线段垂直平分线的画法,熟练掌握尺规作图是本题的关键.21.(1)5cm;(2)最大值是800cm2.【分析】(1)设剪掉的正方形的边长为x

cm,则AB=(40-2x)cm,根据盒子的底面积为484cm2,列方程解出即可;(2)设剪掉的正方形的边长为x

cm,盒子的侧面积为y

cm2,侧面积=4个长方形面积;则y=-8x2+160x,配方求最值.【详解】(1)设剪掉的正方形的边长为xcm,则(40﹣2x)2=900,即40﹣2x=±30,解得x1=35(不合题意,舍去),x2=5;答:剪掉的正方形边长为5cm;(2)设剪掉的正方形的边长为xcm,盒子的侧面积为ycm2,则y与x的函数关系式为y=4(40﹣2x)x,即y=﹣8x2+160x,y=﹣8(x﹣10)2+800,∵﹣8<0,∴y有最大值,∴当x=10时,y最大=800;答:折成的长方体盒子的侧面积有最大值,这个最大值是800cm2.【点睛】本题考查了一元二次方程的应用和二次函数的最值问题,根据几何图形理解如何建立一元二次方程和函数关系式是解题的关键;明确正方形面积=边长×边长,长方形面积=长×宽;理解长方体盒子的底面是哪个长方形;解题时应该注意如何利用配方法求函数的最大值.22.(1)反比例函数解析式为y=﹣;一次函数解析式为y=﹣x+2;(2)P点坐标为(0,2).【分析】(1))先把点A点坐标代入y=中求出k2得到反比例函数解析式为y=-;再把B(3,n)代入y=-中求出n得到得B(3,-1),然后利用待定系数法求一次函数解析式;(2)设P(x,-x+2),利用三角形面积公式得到AP:PB=1:3,即PB=3PA,根据两点间的距离公式得到(x-3)2+(-x+2+1)2=9[(x+1)2+(-x+2-3)2],然后解方程求出x即可得到P点坐标.【详解】(1)把点A(﹣1,3)代入y=得k2=﹣1×3=﹣3,则反比例函数解析式为y=﹣;把B(3,n)代入y=﹣得3n=﹣3,解得n=﹣1,则B(3,﹣1),把A(﹣1,3),B(3,﹣1)代入y=k1x+b得,解得,∴一次函数解析式为y=﹣x+2;(2)设P(x,﹣x+2),∵S△APO:S△BOP=1:3,∴AP:PB=1:3,即PB=3PA,∴(x﹣3)2+(﹣x+2+1)2=9[(x+1)2+(﹣x+2﹣3)2],解得x1=0,x2=﹣3(舍去),∴P点坐标为(0,2).【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.23.(1)CG=1;(2)见解析【分析】(1)根据平行四边形的性质得到AB∥CD,证明△EGC∽△EAB,根据相似三角形的性质列出比例式,代入计算即可;

(2)分别证明△DFG∽△BFA,△AFD∽△EFB,根据相似三角形的性质证明即可.【详解】(1)解:∵四边形ABCD是平行四边形,

∴AB∥CD,

∴△EGC∽△EAB,∴,即,解得,CG=1;

(2)证明:∴AB∥CD,

∴△DFG∽△BFA,∴,∴AD∥CB,

∴△AFD∽△EFB,∴,∴,即.【点睛】本题考查了平行四边形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.24.(1)证明见解析;(2)PA+PB=PF+FC=PC;(3)1+.【分析】(1)欲证明AD是⊙O的切线,只需推知AD⊥AE即可;(2)首先在线段PC上截取PF=PB,连接BF,进而得出△BPA≌△BFC(AAS),即可得出PA+PB=PF+FC=PC;(3)利用△ADP∽△BDA,得出==,求出BP的长,进而得出△ADP∽△CAP,则=,则AP2=CP•PD求出AP的长,即可得出答案.【详解】(1)证明:先作⊙O的直径AE,连接PE,∵AE是直径,∴∠APE=90°.∴∠E+∠PAE=90°.又∵∠DAP=∠PBA,∠E=∠PBA,∴∠DAP=E,∴∠DAP+∠PAE=90°,即AD⊥AE,∴AD是⊙O的切线;(2)PA+PB=PC,证明:在线段PC上截取PF=PB,连接BF,∵PF=PB,∠BPC=60°,∴△PBF是等边三角形,∴PB=BF,∠BFP=60°,∴∠BFC=180°﹣∠PFB=120°,∵∠BPA=∠APC+∠BPC=120°,∴∠BPA=∠BFC,在△BPA和△BFC中,,∴△BPA≌△BFC(AAS),∴PA=FC,AB=CB,∴PA+PB=PF+FC=PC;(3)∵△ADP∽△BDA,∴==,∵AD=2,PD=1,∴BD=4,AB=2AP,∴BP=BD﹣DP=3,∵∠APD=180°﹣∠BPA=60°,∴∠APD=∠APC,∵∠PAD=∠E,∠PCA=∠E,∴∠PAD=∠PCA,∴△ADP∽△CAP,∴=,∴AP2=CP•PD,∴AP2=(3+AP)•1,解得:AP=或AP=(舍去),由(2)知△ABC是等边三角形,∴AC=BC=AB=2AP=1+.【点睛】此题属于圆的综合题,涉及了圆周角定理,切线的判定与性质,相似三角形的判定与性质,全等三角形的判定与性质等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论