




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1
BIOENERGYANDCARBON
CAPTUREANDSTORAGE
CHRISTOPHERCONSOLI
SeniorConsultant-Storage
2
Keymessages
•BECCSrequiresthewide-scaledeploymentofCCS
•HistoricallyBECCSdeploymenthasbeenslow;therearefewoperatingfacilities
•MajorBECCStechnologiesaremature;theirpotentialissubstantial
•Theavailabilityofland,waterandfertilisertosupplybiomassisthemajorconstraintonBECCS
•MostclimatechangescenariosusenegativeemissionstechnologiestodrawCO2fromtheatmosphere;ofthese,BECCSisthebestoption
•ThescaleofBECCSdeploymentreachesgigatonnesofCO2storedperyeartomeetglobalwarmingtargetssetfortheendofthecentury
3
Negativeemissionstechnologieswillbeneededtomeettargets;BECCSisthebestoption
Afteralmostthirtyyearsofclimatechangenegotiations,globalCO2levelsarestillrising(NOAA,2018).TheUNFCCCParisAgreementgoalsofholdingglobalwarmingto‘well-below’2°Candto‘pursueefforts’tolimititto1.5°Careinstarkcontrasttotheever-dwindlingcarbonbudget.
Theevidencemakesitclear.CO2needstoberemovedfromtheatmosphere,knownascarbondioxideremoval(CDR)1,usingnegativeemissionstechnologies(NETs)tomeetglobalwarmingtargets.Bioenergywithcarboncaptureandstorage(BECCS)isemergingasthebestsolutiontodecarboniseemission-intensiveindustriesandsectorsandenablenegativeemissions(Figure1).
BECCSisagroupofdifferenttechnologiestoproduceenergyfrombiomassandstoretheCO2
BECCSispartofthebroaderCCStechnologygroup.Bioenergyhasbeenusedsincethedawnoftimebyhumanstoproduceheat.Today,bioenergyisusedtofuelvehiclesthroughbioethanolandprovideelectricitybyburningbiomass.
CCShasbeenworkingsafelyandeffectivelysince1972tocaptureCO2fromawiderangeofindustriesandsectors.Today,thereare18large-scalefacilitiesinoperation,fiveunderconstructionand20invariousstagesofdevelopment.CCSisbecomingtheconduitforanewenergyeconomyandenablingthedecarbonisationofindustry–includingBECCS.
Figure1:Bioenergyandcarboncaptureandstorage(BECCS)schematic
BECCSinvolvestheutilisationofbiomassasanenergysourceandthecaptureandpermanentstorageofCO2producedduringtheconversionofbiomasstoenergy.Thereisnosingular
1CDRtechnologiesincludeafforestation,reforestation,oceanfertilisation,DACS,andBECCS
4
definitionof“BECCS”sinceitcanincludeavarietyofindustries,biomassfeedstocksandmethodsofenergyconversion.Thefinaluseofthebiomassalsovarieswidely.
WhatisclearisthatCCSisintegraltotheprocess,whichincludes:
1.BiomassfeedstockdrawsdownCO2fromtheatmospherethroughphotosynthesisastheplantsgrow.
•Biomassfeedstockisderivedfromaresidualproduct(e.g.sugarcanewaste)ordedicatedenergycrops(e.g.fast-growingtreespecieslikewillowstrees)plantedpurelyasafeedstock
•Todaybiomassfeedstocksupplyisdominatedbyforestmanagementschemesandagriculture
•Algaecultivationandmunicipalorganicsolidwasteisbeingtested
2.Biomassisthentransportedtotheend-useroraconversionfacility.
3.Biomassiscombustedorisconvertedtobiofuelusingdigestion/fermentationprocesses.CO2isproducedduringcombustionorconversion.
4.CO2isthencapturedandstored.
5.NegativeemissionsarepossibleiftheCO2storedisgreaterthantheCO2emittedduringbiomassproduction,transport,conversationandutilisation.
BECCSisappliedintwooverarchingmethodsaccordingtotheutilisationofthebiomass–combustionandconversion.Combustiondirectlyusesbiomassasafuelsourcetoproduceheatforuseinelectricitygenerationorindustrialapplicationsincludingcement,pulpandpapermaking,wasteincineration,steelandiron,andpetrochemicaltohighlightafew.TheCO2iscapturedfromthefluegasstreamproducedduringcombustion.
Thesecondmethodinvolvestheconversionofbiomassthrougheitherdigestionorfermentationtoproducegaseousorliquidfuels,respectively.Themostcommonfuelisbioethanolwhichproducesanear-purestreamofCO2duringthefermentationprocess.TheCO2isthencompressedandstored,omittingtheneedforcapture.ThesubsequentcombustionofthebiofuelorgasalsoproducesCO2which,ifnotstored,resultsinoverallloweremissionsreduction.
HistoricallyBECCSdeploymenthasbeenslow;therearefewoperatingfacilities
Currently,fivefacilitiesaroundtheworldareactivelyusingBECCStechnologies(Figure2;Appendix1).Collectively,thesefacilitiesarecapturingapproximately1.5milliontonnesperyear(Mtpa)ofCO2.
Theonlylarge-scale2BECCSfacilityistheIllinoisIndustrialCCSfacilitythatcapturesupto1MtpaofCO2.OwnedbyArcherDanielsMidland,thisfacilityproducesethanolfromcornatitsDecaturplant,producingCO2aspartofthefermentationprocess.TheCO2isstoredinadedicatedgeologicalstoragesitedeepunderneaththefacility.
2TheGlobalCCSInstitutedefinitionoflarge-scaleiscapturingandstoringgreaterthan400,000tpaCO2forindustrialfacilities;800,000tpaCO2forpowergeneration.
5
TheremainingfourBECCSfacilitiesoperatingtodayaresmall-scaleethanolproductionplants,usingmostoftheCO2forenhancedoilrecovery(EOR);including:
1.KansasArkalon(USA):200,000tpaofCO2iscompressedandpipedfromanethanolplantinKansastoBookerandFarnsworthOilUnitsinTexasforEOR.
2.BonanzaCCS(USA):100,000tpaofCO2iscompressedandpipedfromanethanolplantinKansastonearbyStewartOilfieldforEOR.
3.HuskyEnergyCO2Injection(Canada):250tonnesperday(tpd)ofCO2iscompressedandtruckedfromanethanolplantinSaskatchewantonearbyLashburnandTangleflagsoilfieldsforEOR;thefieldsareshallow(~500m)andcompriseheavyoil.
4.Farnsworth(USA):Over600,000tonnesofCO2wascompressedfromanethanolplant(Kansas)andfertiliserplant(Texas)andpipedtoFarnsworthoilfieldforEOR.InjectionhasnowceasedaspartofDOE/NETLSouthWestPartnershipsDevelopmentPhasebutcurrentlymonitoringtheinjectedCO2atanongoingEORoperation.
ThreeadditionalprojectsareplanningonBECCS:
1.MikawaPowerPlant(Japan):Theretrofitofa49-megawattunitpowerplantinOmuta(FukuokaPrefecture)toaccept100percentbiomasswithaCO2capturefacility.Thefocusisnowidentifyingasecureoffshorestoragesite.
2.DraxPowerPlant(UK):BiomasspowergenerationpilotinNorthYorkshirewiththepotentialtodevelopCO2captureandstorage
3.NorwegianFull-ChainCCS(Norway):BECCSintegrationintowaste-to-energyandacementplants:
•Klemetsrudwaste-to-energyplant:Planstocapture400,000tpaofCO2.
•NorcemCementplant:Currentlyco-firesupto30percentbiomassandplanstocaptureupto400,000tpaofCO2.
•BothplantswillsendtheirCO2toamulti-userstoragesiteintheNorwegianNorthSea.
SeveralnotablebioenergyfacilitiesutilisetheCO2forcropcultivation(greenhouses).(SeeAppendix1fordetails).
6
Figure2.Bioenergyandcarboncaptureandstoragefacilitiesworldwide(GlobalCCSInstitute,2019)
7
MajorBECCStechnologiesaremature;thepotentialissubstantial
Theindividualtechnologiestoutilisebiomasstoproduceenergyorfuel,aswellasthecapture,transportandstorageofCO2,areallmatureandactiveincommercialfacilitiesaroundtheworld
(Table1)
.
ThereisenormouspotentialforBECCS.Thelargest(intermsofenergyproduction)andmostcommercially-attractiveBECCSapplicationistheproductionofbioethanolandCCS.Thetechnologyisalreadymature.In2017,around68Mtoe3ofbiomass-derivedbiofuelswereproduced;two-thirdswereethanol(IEA,2018).TheUSAproducesoverhalfoftheworld’sbiofuels,butthereareopportunitiesaroundtheworld,includingdevelopingnationsacrossSouthAmerica,Sub-SaharanAfricaandSouthEastAsia.AnincreaseinbiofueluseinthetransportsectorcouldinitiateareductioninCO2emissionsinatraditionallydifficultsectortodecarbonise.
Forglobalpowergeneration,biomasssuppliesabout52Gigawatts(GW)(CSLF,2018).Justthose52GWtodaycouldresultinsignificantCO2reductioniftheCO2iscaptureandstored.TheDraxPowerplantinYorkshire,UK,completedaconversionofthree660megawatts(MW)unitstousebiomass(GlobalCCSInstitute,2019).Asstatedpreviously,theyareundertakingapilotcapturefacilityalso.
PerhapsoneofthelargestBECCSapplicationsiswaste-to-energy(WtE).Burningmunicipalsolidwaste(anotherformofbiomass)togenerateheatandelectricityandcapturingandstoringtheCO2willresultinnegativeemissions4.ThetechnologybehindcapturingtheCO2inthefluegasofaWtEplantissimilartoCO2captureonfossilfuelplants.ThenumbersfromtheCarbonSequestrationLeadershipForum(CSLF)arestaggering:
•Percentofwasteburntforenergy:Japan,70percent;Norway,53percent;UK,26percent;USA,13percent
•NumberofWtEfacilitiespercountry/region:EU,455;China,223;USA,74
Inadditiontothosethreespecificindustries,BECCScouldbeappliedtoindustriesthatrequiresignificantheatandelectricityduringproduction.Forexample,biomasscurrentlysuppliessixpercentoftotalthermalenergyforcementproductionglobally.Asdiscussed,thereiscurrentlyoneplannedBECCSfacilityoncementinNorway.However,theglobalpledgefromcementproducersisareductionof20-25percentofemissionsby2030;equivalentto1Gtcomparedtobusinessasusual(CSLF,2018).CCSistheonlyoptiontodecarboniseforthecementindustry(dePeeetal.,2018);applyingBECCScouldhelpthecementindustrytomeetthatpledge.
3Mtoe,milliontonnesofoilequivalentisaunitofenergy,representingtheamountofenergyreleasedbyburningonetonneofcrudeoil.
4Thenetnegativeemissionsandenergygeneratedbyburningwastedependsonratioofbiogenictonon-biogenicwasteandvariesfromsitetosite.
8
FEEDSTOCK
TRL
Lignocellulose(ForestryandWood)
Large-scalePilottoFull-Commercial
Agricultural
residues
Large-scalePilottoFullCommercial
Sugars/starch
crops
Proof-of-conceptReachedtoFullCommercial
Organicwaste
FullCommercial
Algae
Pre-commercial
Demonstration
Oilcrops/waste
Proof-of-conceptReachedto
FullCommercial
PROCESS
TRL
Combustion
FullCommercial
Gasification
BasicConceptto
First-of-KindCommercial
Fermentation
PrototypePilottoFullCommercial
Anaerobic
digestion
FullCommercial
Extraction
Pre-commercial
Demonstrationto
FullCommercial
Densification
FullCommercial
Pyrolysis
Large-scalePilotto
FullCommercial
Table1.TechnicalReadinessLevel(TRL)rangeorfinallevelreachedofthefundamentalpartsofbioenergyandcarboncaptureandstorage(After:CSLF(2018);NAS(2018)
PRODUCT
TRL
Steam/Heat
FullCommercial
Ethanol
FullCommercial
Biodiesel
FullCommercial
Liquid
hydrocarbon
ConceptValidationto
Pre-commercial
Demonstration
Methane
FullCommercial
Vegetableoil
FullCommercial
Pellets
FullCommercial
Biochar/Charcoal
FullCommercial
9
ThecostofimplementingBECCStechnologyvarieswidely.AreviewoftheentireliteratureonBECCSbyFussetal.(2018)foundacostrangebetweenUS$15-400pertonneofCO2avoided
dependingonthesector
(Table2)
.
Table2.CostofCCSappliedtodifferentsectors(AfterFussetal.(2018);NAS(2018)
BECCS
Sector
Combustion
Ethanol
Pulpandpapermills
Biomassgasification
CO2avoided5cost(US$/tCO2)
88-288
20-175
20-70
30-76
FossilFuel-
Powergeneration(coal)
55-83
firedand
Powergeneration(gas)
43-89
CCS
Naturalgas
Ironandsteel
Cement
20-21
65-77
103-124
MostclimatechangescenariosuseBECCStomeettargetsatgigatonnescale
Climatechangeintegratedassessmentmodels(IAMs)6haveafirmrelianceonCDRbecausethemodelsassumeCDRdeploymentinthefutureislowercostthanreducingcurrentemissions(Anderson&Peters,2016).ThisassumptionmeansdeployingBECCSinthefuture,evenatagigatonneindustrial-scaleisstillcheaperthanreducingemissionstoday.BECCSisthemostwidelyusedCDRtechnologyfromaround2030till2100becausethetechnology:
•Enablesnegativeemissions
•Producesbioenergytooffsetorreplacecurrentfossilfuel-derivedsources
ThemostwidelyusedaverageforBECCScontributionintheliteratureis3.3gigatonneperannum(Gtpa)CO2in2100derivedfromtheIPCC’slastfullClimateChangeAssessmentReportin2014(Smithetal.,2015).
However,thedwindlingcarbonbudgetcreatesever-increasingrelianceonnegativeemissionstomeetclimatechangetargets;especiallyforthetargetthatlimitsglobalwarmingto1.5oCasdetailedintheIPCCSR15report.TheSR15reportidentifiesthecumulativeBECCScontributionofbetween0and1191GtCO2,dependingonthescenariopathway.Thosepathwaysremovebetween0-8GtpaCO2in2030throughBECCS.In2100,theupperrangeofthe1.5oCscenariosis16GtpaofCO2.Figure3showsthegrowingroleofBECCSthroughoutthiscenturyacrossthevariousscenariosoftheIPCCandtheIEA.
ThewidevariationinBECCScontributiontoclimatechangescenariosisduetothedifferentscenarios.Ingeneralterms,scenariosthatassumemoreaggressivereductionsindemandforenergyandemissions-intensiveproducts(e.g.chemicals,cement,steel)requirefewerNETsandlessBECCS.Alternatively,scenariosthatmorecloselyresemblecurrenttrendswith
5SeeLawrence(2017)foradditionaldata.Valuerangerepresentslowesttohighestvaluereported.
6IAMsarecomputermodelsthatintegratephysicalandsocial-economicfactorsrelatedtoclimatechangebasedonassumptions,historicaldataandscenariodesignstoassessvariousoutcomesofpolicy,technologyandclimateimpacts.
10
comparablepatternsofenergyuseanddemandforemissions-intensiveproductsrequiremoreNETsandthereforemoreBECCS(Allenetal.,2018).
Whatisclearisthatbytheendofthecentury,BECCSneedstobedeployedatagigatonneofCO2peryearscale(Figure3).
Figure3.TotalCO2storedfrombioenergyandcarboncaptureandstorageinclimatechangemodelsaccordingtorecentdata(DatafromHuppmannetal.(2018)andIEA(2018).TheSharedSocioeconomicPathways(SSP)areaseriesofsocio-economicpathwaysthatguidefuturedevelopmentintheintegratedassessmentmodels(SeeIIASA(2018)formoreinformationonSSP)
BiomasssupplyisaconstraintonBECCS
Integratedassessmentmodelsusedtodevelopclimatechangescenariosgenerallyassumethatconstraintsonbiomassproduction,suchastheavailabilityofland,waterandfertiliser,donotpreventsufficientbiomasssupply.
AreviewoftheliteratureidentifiesthatthelimitingfactorofBECCSisnottechnology;itisthesupplyofbiomass.
NAS(2018)foundthatinnegativeemissionsscenariosusingBECCS,everygigatonneofCO2storedperyearrequiresapproximately30-40millionhectaresofBECCSfeedstock(NAS,2018).AccordingtotheCSLF(2018)thisequatestoapproximately430-580millionhectaresof
11
landdevotedtobioenergycrops7.TheCSLFestimatedthatusingonlydedicatedbioenergycrops(anefficientmethodtoproducebioenergy)mayrequireuptoone-thirdofarablelandaroundtheworld(CSLF,2018).
Toputthosenumbersintoperspective,accordingtoAndersonandPeters(2016)anareaonetotwotimesthesizeofIndiaisrequiredtomeettheBECCStargetsbasedonpublishedIAMs(Anderson&Peters,2016).
Intermsofspecificincreasesinbiomass,meetingtheupperboundsoftheBECCStargets,accordingtoFajardyandMacDowell(2017)equals:
•Threetimestheworld’stotalcerealproduction
•Twicetheannualworlduseofwaterforagriculture
•Twentytimestheannualuseofnutrients
MeetingtheBECCStargetsrequiresafundamentalrevolutionoftheproductionoffoodandenergycrops.However,modellingaccordingtoFajardyandMacDowell(2017)indicatesthatBECCScanbesustainablewhentargetingthecorrectenergycropsandbestland-usepractices.
BECCSrequiresthewide-scaledeploymentofCCS
Thereisnodoubtthatnegativeemissiontechnologies,mainlyBECCS,arecriticaltoclimatestabilisation.Thereishoweversignificantuncertaintyaboutthescaleofthatcontribution.EspeciallyifthetechnologyisexpectedtomeetgigatonneperyearCO2storagescale.Themostnotableconstraintisthesupplyofsustainablebiomass.
Thepotential,futuredeploymentofBECCSshouldnotbeconsideredasanalternativetoachievingcritical,cross-sectoremissionsreductionstoday.BECCSshouldbeseenasanessentialcomplementtotherequired,wide-scaledeploymentofCCStomeetclimatechangetargets.
7LandrequirementbasedonBECCScontributionof3.3GtpaCO2storedaccordingtoSmithetal.(2015).
12
References
Allenetal.,2018.TechnicalSummary;Globalwarmingof1.5°C.AnIPCCSpecialReportontheimpactsofglobalwarmingof1.5°C,IPCC.
Anderson,K.&Peters,G.,2016.Thetroublewithnegativeemissions.Science,354(6309),pp.182-183.
CSLF,2018.TechnicalSummaryofBioenergyCarbonCaptureandStorage(BECCS),CarbonSequestrationLeadershipForum.
dePeeetal.,2018.Decarbonizationofindustrialsectors:thenextfrontier,McKinsey&Company.Fajardy,M.&MacDowell,N.,2017.CanBECCSdeliversustainableandresourceefficientnegativeemissions?.EnergyandEnvironmentalScience,Volume10,pp.1389-1426.
Fussetal.,2018.Negativeemissions—Part2:Costs,potentialsandsideeffects.EnvironmentalResearchLetters,13(063002).
GlobalCCSInstitute,2019.CO2REFacilityDatabase.[Online].
Huppmannetal.,2018.IAMC1.5°CScenarioExplorerandDatahostedbyIIASA,Integrated
AssessmentModelingConsortium&InternationalInstituteforAppliedSystemsAnalysis.
IEA,2018.WorldEnergyOutlook,Paris:IEA.
InternationalInstituteforAppliedSystemsAnalysis(IIASA),2018.SSPDatabase(Shared
SocioeconomicPathways)-Version2.0.[Online]
Availableat:https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about
[AccessedFebruary2019].
Lawrence,I.,2017.GlobalCostsofcarboncaptureandstorage:2017update,Melbourne:GlobalCCSInstitute.
NationalAcademyofSciences(NAS),2018.NegativeEmissionsTechnologiesandReliableSequestration:AResearchAgenda,Washington,DC:TheNationalAcademiesPress.
NOAA,2018.GlobalGreenhouseGasReferenceNetwork.[Online]
Availableat:/gmd/ccgg/trends/full.html
[AccessedJanuary2018].
Smithetal.,2015.BiophysicalandeconomiclimitstonegativeCO2emissions.NatureClimateChange,Volume6,pp.42-50.
13
APPENDIX1
1
IllinoisIndustrialCarbonCaptureandStorage
ADMcorn-to-ethanolplant
Decatur,Illinois,US
Large
Operating
2017
1,000,000
EthanolProduction
DemonstrationandPilot
Completed
2011-2014
300,000
2
NorwayFullChainCCS
Brevik(NorcemAS),Herøya(YaraNorgeAS),Klemetsrud(KlemetsrudanleggetAS)
Norway
Largescale
Advanced
development
2023-2024
800,000
CementProduction
(>30%biomass),
Waste-to-energy
(50-60biomass)
CO2CaptureTestFacilityatNorcemBrevikCement,Pilot
Completed
2013
Variable
3
Occidental/WhiteEnergy
HerefordPlantandPlainviewBioenergy
Texas,UnitedStates
Inevaluation
Inevaluation
TBC
600,000-700,000
EthanolProduction
4
RusselCO2injectionplant
ICMethanolplant
Russel,Kansas,
UnitedStates
DemonstrationandPilot
Completed
2003-2005
7,700tonnes(total)
EthanolProduction
5
ArkalonCO2CompressionFacility
ArkalonEnergyethanolplant
Liberal,Kansas,US
DemonstrationandPilot
Operational
2009
290,000
EthanolProduction
6
BonanzaBioEnergyCCUSEOR
BonanzaBioEnergy
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 长沙市生物中考试卷及答案
- 护理病人考试题及答案解析
- 难点详解人教版八年级上册物理《机械运动》同步测试试卷(含答案详解版)
- 人卫考试题库护考及答案
- 乡村医生编制考试题库及答案
- 红窑初二月考试卷及答案
- 大学进化生物学考试题及答案
- 2025-2026学年度四川省巴中市八年级第一学月检数学测试题 参考答案
- 晋中初一生物考试题及答案
- 制茶师二级考试题目及答案
- 2025营养指导员理论知识考试题库和答案
- 养老照护机构长者康复训练服务流程1-1-1
- 高中化学命题分析课件
- 肛瘘的护理小讲课稿
- 国家化妆品不良反应监测系统用户操作手册
- 《生产安全事故报告和调查处理条例》知识培训
- 如何成为成功的质量总监
- 河北省邯郸市武安市2023-2024学年一年级(上)期中语文试卷(含答案)
- GB/T 13537-2024电子类家用电器用电动机通用技术规范
- 读者简明使用手册-大连理工大学图书馆
- 《成人有创机械通气气道内吸引技术操作》标准解读
评论
0/150
提交评论