版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1函数、极限、连续解.11x21,0x22,|x|21x2.设limatetdt,则a=________.axxxa解.可得eaatetdt=(tetet)aeaea,所以a=2.12nnnn1nn2n3.limn=________.n2221nnn2nnnnnn解.n22212nnnn12nn1n1nn2nn1nn1n<<n22222212n12nnnn12n<n1nn2nn1所以<n2nnn2222n(1n)12n12n2nn2,(n)nnn2n(1n)12n12nn1n2n12,(n)2121nnnn1nn2nlimn所以=2n2221|x|1|x|1,则f[f(x)]_______.4.已知函数f(x)0解.f[f(x)]=1.5.lim(n3nnn)=_______.n解.lim(n3nnn)lim(n3nnn)(n3nnn)3nnnnnnn3nnnn3nnn=limn2x0时,f(x)e1ax1bx为x的3阶无穷小,则a_____,b______.6.设当xex1ax1bxlimexbxex1axlimexbxex1ax解.klimx03x3x0x0limexbexbxexa(1)3x2x0limex2bexbxex(2)6x2x0由(1):lim(exbexbxexa)1ba0x0由(2):lim(ex2bexbxex)12b0x0b1,a122117.limcotxx0=______.sinxxcosxxsinxlimxsinxlim1cosxlimsinx1limx0解.sinxxsinxx33x26x6x0x0x0n1990A(0),则A=______,k=_______.limn8.已知nk(n1)kn1990n1990Alim解.limnnk(n1)knknk11A,A11所以k-1=1990,k=1991;kk1991二.选择题1.设f(x)和(x)在(-,+)内有定义,f(x)为连续函数(a)[f(x)]必有间断点(b)[(x)]2必有间断点(c)f[(x)]必有间断点(d)1|x|1,且f(x)0,(x)有间断点,则(x)f(x)必有间断点(x)解.(a)反例0|x|1,f(x)=1,则[f(x)]=111|x|1|x|1,[(x)]2=1(x)(b)反例1|x|1(x)(c)反例0|x|1,f(x)=1,则f[(x)]=1(x)(d)反设g(x)=f(x)在(-,+)内连续,则,+)内连续,矛盾.所以(d)是答案.(x)=g(x)f(x)在(-f(x)xtanxesinx,则f(x)是2.设函数(a)偶函数(b)无界函数(c)周期函数(d)单调函数解.(b)是答案|x|sin(x2)解.limf(x),limf(x),f(0)sin2,f(0)sin244x1x0所以在(-1,0)中有界,(a)为答案.x2114.当x1时,函数x1ex1的极限(a)等于2(b)等于0(c)为(d)不存在,但不为x10x10.(d)为答案x21x111limx1ex1lim(x1)ex1x1解..0352n1的值是1222232n2(n1)5.极限lim22n(a)0(b)1(c)2(d)不存在352n11222232n2(n1)limn解.22=lim11111223111lim1n1,所以(b)为答案.n(n1)(n1)2222222n(x1)95(ax1)(x21)5058,则a的值为6.设limx(a)1(b)2(c)58(d)均不对(x1)95(ax1)5=lim(x1)95/x95(ax1)5/x5解.8=limx(x21)50(x1)/x250100x(11/x)95(a1/x)(11/x2)505a5,a58,所以(c)为答案.=limx(x1)(x2)(x3)(x4)(x5)7.设limx,则,的数值为(3x2)13131(a)=1,=(b)=5,=(c)=5,=(d)均不对35解.(c)为答案.8.设f(x)2x3x2,则当x0时(a)f(x)是x的等价无穷小(b)f(x)是x的同阶但非等价无穷小(c)f(x)比x较低价无穷小(d)f(x)比x较高价无穷小lim2x3x22xln23xln3ln2ln3解.=limx0,所以(b)为答案.x1x0lim(1x)(12x)(13x)a6,则a的值为9.设x0x(a)-1(b)1(c)2(d)3解.lim(1x)(12x)(13x)a0,1+a=0,a=-1,所以(a)为答案.x0atanxb(1cosx)limx02,其中a2c20,则必有10.设cln(12x)d(1ex2)(a)b=4d(b)b=-4d(c)a=4c(d)a=-4cabsinxatanxb(1cosx)0cln(12x)d(1ex2)=cos2xa,所以a=-4c,所以(d)为答案.2c2xdex2c解.2=limxlimx0212x三.计算题1.求下列极限lim(xex)1(1)xxln(xex)exlimln(xex)elim1exe1lim(解.xex)xlimeexxex1xxxx(2)lim(sin2cos1)xxxx解.令y1xlim(sin2cos1)xlim(sin2ycosy)y=ey01limln(sin2ycosy)elim2cos2ysinyy0e2ysin2ycosyxxxy01tanx1(3)limx0x31sinx1tanx13lim1xtanxsinx1x3limx01sinx解.1sinxx0tanxsinx1sinxtanxsinxtanxsinx(1sin)xx3xtansinxlim1=elimx0x31sinxx0sinx2sin2xlimsinx(1cosx)x012lim=exe2.=ex3x302.求下列极限ln(13x1)(1)limx1arcsin23x21ln(13x1)~3x1arcsin23x21~23x21.按照等价无穷小代换解.当x1时,,ln(13x1)3x111limlimlimx123x1232x1arcsin23x21x123x211cotx(2)limx02x2解.方法1:sin2xx11cos2x2cos2xlimlimx0cot2xlimx0==xsin2xx2sin2xx22x01(x21)cos2x2xcos2x2(x21)cosxsinxlimlimx0==44x3xx0=lim2xcos2xsin2xlim2x2cosxsinx4x34x3x0x0=lim2cos2x4xcosxsinx2cos2x112x22x0=lim2cos2x2cos2x11lim4cosxsinx4sin2x1124x3212x232x0x0=lim2sin2x111112632324x32x0方法2:sin2xx2cos2x11cos2xlim=limx0cot2xlimx0=xsin2xx2sin2xx0x2211(x21)(cos2x1)1(x1)cos2x22limlim==x4x4x0x01(2x)2(2x)40(x4)1(x21)(1122!4!=limx0x41=2x4=lim3x423x03.求下列极限n(1)limn(nn1)lnnnnn1x(nn1)lim令n1xlimx01ln(1x)解.limnnlnnnlnnn(2)lim1enxn1enx1x0x0x0解.lim1enx0n1enx1nannnbblimn(3)解.,其中a>0,b>0211cxnanlimln(1x0cx)ln2x1/n,cb/aalimxaelimnx22x0limln(1cx)ln2limcxlnc=aex0aex01cxacababxa2(1cosx)x0x0x0x24.设f(x)11cost2dtxx0试讨论f(x)在x0处的连续性与可导性.1cost2dtxxlimcost2dt1xf'(0)limf(x)f(0)limx00解.xxx2x0x0x0limcosx21lim12x202x2xx0x02(1cosx)1lim2(1cosx)x2f'(0)limf(x)f(0)limx2xxx3x0x0x0lim2sinx2xlim2(cosx1)03x26xx0x0f'(0)0,f(x)在x0处连续可导.所以1(1)111f(0)lim2x11,f(02x1)lim1解.11x021x021xx所以x=0为第一类间断点.x(2x)x0x02cosxf(x)sin(2)1x21解.f(+0)=-sin1,f(-0)=0.所以x=0为第一类跳跃间断点;1limf(x)limsinx21不存在.所以x=1为第二类间断点;x1x1x(2x)f()不存在lim,而2,所以x=0为第一类可去间断点;22cosxx2x(2x),(k=1,2,…)所以x=klim为第二类无穷间断点.2cosx2xk26.讨论函数f(x)xx0在x=0处的连续性.ex0时lim(xsin1)不存在,所以x=0为第二类间断点;解.当xx00,lim(xsin1)0,所以当xx01时,在x=0连续,1时,x=0为第一类跳跃间断点.7.设f(x)在[a,b]上连续,且a<x<x<…<x<b,c(I=1,2,3,…,n)为任意正数,则在(a,b)内至少存在一个,使n12icf(x)cf(x)cf()1122n.cccn12证明:令M=max{f(x)},m=min{f(x)}ii1in1incf(x)cf(x)c1122nM所以mcccn12cf(x)cf(x)cnx<b),使得f()1122所以存在(a<x1cccnn128.设f(x)在[a,b]上连续,且f(a)<a,f(b)>b,试证在(a,b)内至少存在一个,使f()=..所以(x)f(x)x恒大于0或恒小于0.不妨设x[0,1],(x)f(x)x0.令mmin(x),则m0.0x1证明:令F(x)=x5-3x-2,则F(1)=-4<0,F(2)=24>0所以在(1,2)内至少有一个,满足F()=0.0,求f(0),f'(0),f''(0)及limf(x)3sin3xf(x)12.设f(x)在x=0的某领域内二阶可导,且limx0.x3x2x2x0解..所以sin3xlimf(x)0.f(x)在x=0的某领域内二阶可导,所以f(x),f'(x)在x=0连续.所以f(0)=-3.因为xx0sin3xf(x)sin3x3f(x)3x0,所以limx0x0,所以limx0x2x23sin3xlimf(x)3limxlim3xsin3xlim33cos3x3x2x0x2x2x3x0x0x0=lim3sin3x92x2x0f'(0)limf(x)f(0)limf(x)3limxf(x)3090x0xx22x0x0x0limf(x)39由x02,将f(x)台劳展开,得x2f(0)f'(0)x21!f''(0)x20(x2)3limx0912f''(0)92,于是2,所以x2f''(0)9.2导数与微分一.填空题f(xkx)f(x)13f'(x),则k=________.1.设limx000x0解.klimf(xkx)f(x)1f'(x),所以kf'(x)13f'(x)00kx3000x0所以k13dydx2.设函数y=y(x)由方程exycos(xy)0确定,则解.exy(1y')(yxy')sinxy0,所以______.y'ysinxyexyexyxsinxy3.已知f(-x)=-f(x),且f'(x)k,则f'(x)______.00解.由f(-x)=-f(x)得f'(x)f'(x),所以f'(x)f'(x)f'(x)f'(x)k所以00f(xmx)f(xnx)x_______.4.设f(x)可导,则limx000f(xmx)f(x)f(x)f(xnx)lim0000解.xx0f(xmx)f(x)+nlimf(xnx)f(x)=(mn)f'(x)=mlimx00000mxnx0x0f(x)1x,则f(n)(x)=_______.5.1xf'(x)1x1x(1)121!(1)k2k!(k)(1x)k1f解.(1x)11,假设,则(1x)2(1)k12(k1)!(1x)k11(1)n2n!(1x)n1f(k1),所以f(n)d11,则f'1_______.2fx6.已知dxx2121,所以f'1.令x=2,所以f'x11x22解.f'22x2x3xx2dy解.dxf'(x)cosf(x)f'[sinf(x)]cos{f[sinf(x)]}e8.设y=f(x)由方程2xycos(xy)e1所确定,则曲线y=f(x)在点(0,1)处的法线方程为_______.解.上式二边求导e2xy(2y')(yxy')sin(xy)0.所以切线斜率1.法线斜率为,法线方程为ky'(0)22y112x,即x-2y+2=0.二.选择题f'(x)[f(x)]2,则当n为大于2的正整数时,f(x)的n阶导数是1.已知函数f(x)具有任意阶导数,且(a)n![f(x)]n1(b)n[f(x)]n1解.f''(x)2f(x)f'(x)2![f(x)]3[f(x)]n(d)n![f(x)]n22(c)f1,所以,假设=k()(x)k![f(x)]kf(k1)(x)=(k1)k![f(x)]kf'(x)(k1)![f(x)]k2,按数学归纳法f(n)(x)=n![f(x)]n1对一切正整数成立.(a)是答案.f'(0)2.设函数对任意x均满足f(1+x)=af(x),且b,其中a,b为非零常数,则(a)f(x)在x=1处不可导(b)f(x)在x=1处可导,且f'(1)a(c)f(x)在x=1处可导,且f'(1)b(d)f(x)在x=1处可导,且f'(1)ab11f(1x)f(1)f(x)f(0)x0=limaa1f'(1)af'(1),所以ab.(d)是答案解.b=f'(0)limx0xx0f(x)没有假设可导,不能对于f(1x)af(x)二边求导注:因为.3.设f(x)3x3x2|x|()(0)存在的f,则使n最高阶导数n为(a)0(b)1(c)2(d)34x3x0f''(x)24xx0解.f(x)x0.12xx02x3f'''(0)limf''(x)f''(0)lim24x024x0xx0x0f'''(0)limf''(x)f''(0)lim12x012x0xx0x0所以n=2,(c)是答案.limydy4.设函数y=f(x)在点x处可导0,当自变量x由x增加到x+x时,记y为f(x)的增量,dy为f(x)的微分,0等于x0x0(a)-1(b)0(c)1(d)limydylimo(x)0xx0解.由微分定义y=dy+o(x),所以.(b)是答案.xx05.设f(x)xx0在x=0处可导,则axb(a)a=1,b=0(b)a=0,b为任意常数(c)a=0,b=0(d)a=1,b为任意常数解.在x=0处可导一定在x=0处连续,所以limx2sin1lim(axb),所以b=0.xx0x0x2sin1xlimaxf'(0)f'(0),lim,所以0=a.(c)是答案.xxx0x0三.计算题yln[cos(103x2)],求y'1.sin(103x2)6x6xtan(103x2)cos(103x2)y'解.yf[ln(xax2)],求y'2.已知f(u)可导,12xy'f'[ln(xax)]12解.xax22ax2f'[ln(xax2)]=ax2costdtsiny22xy',求.yedt23.已知t00ey'2xcosx22yy'cosy22解.y2xcosx2y'ey22ycosy2lnx2y2arctanyy'确定的,求.4.设y为x的函数是由方程xy'xyx2x2yy'解.2x2y22x2y2y21x2xy'xyxyy'y'xyy,所以四.已知当x0时,f(x)有定义且二阶可导,问a,b,c为何值时f(x)F(x)ax2bxcx0x0二阶可导.解.F(x)连续,所以limF(x)limF(x),所以c=f(-0)=f(0);x0x0因为F(x)二阶可导F'(x),所以连续,所以b=f'(0)f'(0),且'()2axf'(0)x0fxx0F'(x)F''(0)F''(0)F''(0),所以存在,所以limf'(x)f'(0)lim2axf'(0)f'(0)2a,所以xxx0x0a12f''(0)x2五.已知f(x),求f(n)(0).1x21111解.f(x)121x21xn!1(1)nf(n)(x)12(1x)n12(1x)n1f(2k1)(0)0,k=0,1,2,…f2k(0)n!,k=0,1,2,…六.设yxlnx,求(n)(1).f解.使用莱布尼兹高阶导数公式f(n)(x)x(lnx)(n)n(lnx)(n1)x(1)n1(n1)!n(1)n2(n2)!xnxn1(n1)n1(1)n2(n2)!=(1)n2(n2)!xn1xn1xn1f(1)(1)n2(n2)!(n)所以3一元函数积分学(不定积分)一.求下列不定积分:1.11x21xln1xdx解.11xdx1ln1x1x11x1x2lncln1x21xdln41x21x2.1arctan1xarctan1xdarctan1x11x2dxarctan1x2c1x21x1x1x3.cosxsinx11sinxdx1cosx(1cosx)2解.cosxsinx11sinx1sinx1sinx11sinxx1cosx1cosx21cos2dxdc(1cosx)1cosx24.dxx(x81)1解.方法一:令x1t,xx(81)dxdtt7dtt11ln(1t8)c8t21118tt8181cln1=8x方法二:1)111)dxdxx7dx1)x(7x(xx(xxx888881d(1x8)111ln|x|ln(1x8)c=ln1cdx=x81x88x8812(1sinxcosx)1(sinxcosx)11sinxcosx5.1sinx22dx1sinxcosxdxcosxsinxdx11dx21sinxcosx1dx121sinxcosx2d(1sinxcosx)111x1dx221sincosxx22sincosx2cos2xx2221x1ln|1sinxcosx|11dtanx2222tanx121x1ln|1sinxcosx|1ln|tanx1|c2222二.求下列不定积分:1.dx(x1)2x22x2dt解.d(x1)令x1tantcos2t(x1)2(x1)21tan2tsectdx(x1)2x22x2=cos1x22x2ctdtcsintsintx122.dxx41x2解.令x=tant,dttcos3tsin2tdsintdsint11dxcos2dtctttan4secsin4tsin4t3sin3tsintx41x2311x1x22c=3xx3.dx(2x21)1x2解.令xtantsec2t(2tan2t1)secdtcost2sin2tcosdsintdxdt(2x1)1xt2t1sin2t22x=arctansintcarctanc1x24.(a>0)xdx2a2x2解.令xasinta2sin2tacostdt1cos2tdt1a2t1a2sin2tc24x2dxa2acost2a2x2ca2=2xxarcsina2x2aa25.(1x2)3dx解.令xsint(1cos2t)2dt12cos2tcos22t(1x2)3dxcos4tdtdt4411=44tsin2t1(1cos4t)dttsin2t1sin4tc31884323arcsinx1sin2t(11cos2t)c=8443=8arcsinx12sintcost(412sin2t)c443=8arcsinx1x1x2(52x2)c86.21xdxx41解.令xt1t2x21dx1dt令tsinusinucos2udut12dtt1t2x4t2t41cos3uc(x1)3c2=33x37.x1dxx2x21解.令xsect,dxsecttantdtx1dxsect1secttantdt(1cost)dttsintcsectanttx2x212x21carccos1xx三.求下列不定积分:1.e3xexe2x1dx4xe解.e3xex4xe2xexexdx()deexx1dx1arctan(exex)c2x1e2x(ee)xx2ee2.dx2x(14x)dt解.令t2x,dxtln21111arctantln2dxdtt2(1t2)ln2ln221tdttln2c2x(14x)t21(2xarctan2x)c=ln2四.求下列不定积分:1.x5dx(x2)100解.dx1x55xx5x5d(x2)9999(x2)4(x2)99dx(x2)100999999x55x454x3(x2)98dx99(x2)999998(x2)989998=x5=99(x2)995x454x3543x29998(x2)98999897(x2)9799989796(x2)965432x54329998979695(x2)959998979695(x2)94c2.dxx1x41dt解.令x1/t1dxtdtdt2t2x1x41t411t421(t2)2tt4tanu1sec2udu1ln|tanusecu|cln11x令t4cx222secu22五.求下列不定积分:1.xcos2xdxxcos2xdx1x(1cos2x)dx1x1xdsin2x2解.2441x21xsin2x1sin2xdx4441x21xsin2x1cos2xc448sec3xdx2.sec3xdxsecxdtanxsecxtanxtanxsecxtanxdx解.=secxtanx(secx1)secxdxsecxtanxln|secxtanx|sec23xdx223.(lnx)3dxx2解.(lnx)3dx(lnx)d11(lnx)3(lnx)2dxx233x2xx(lnx)33(lnx)26ln(lnx)33(lnx)26lnx6dxxxxxxdxxxx22(lnx)33(lnx)26lnx6cxxxx4.cos(lnx)dx解.cos(lnx)dxxcos(lnx)sin(lnx)dxx[cos(lnx)sin(lnx)]cos(lnx)dxxcos(lnx)dx[cos(lnx)sin(lnx)]c2xx5.xcosxcos44111x1x2sin3x2dxxdsin2xxsin2sin2dx828282xxsin3cos3221xsin2sin2d1xsin21cotxc1xxxx824228242六.求下列不定积分:1.xln(x1x2)(1x2)2dx解.xln(x1x2)dx1ln(x1x2)d1x221(1x2)211111=2ln(x1x1x221x2)dx21x2ln(x1x)1121tan12令xtantsectdt22(1x)tsect22ln(x1x2)1dt212sin2tcost===2(1x2)ln(x1x2(1x2))1d2sint12sin2t222ln(x1x2)2(1)112sintcln4212sintx2ln(x1x2)11x22xc12ln=2(1)x242x2x2.xarctanxdx1x2解.xarctandxarctanxd1x21x2arctanx1x2dxx1x21x21xarctanx1dx1x2arctanxln(x1x2)c2=1x23.arctanexdxe2x解.arctanexdx1arctanexde1earctanex1eex1e2x2x2x2xdxe2x22212e2xarctanex1dx12e2xarctanex1x12ex(1e2x)dxe21e2x12e2xarctanex1(12e1e2xx)dx12(e2xarctanexexarctanx)cex七.设f(x)xln(1x)3x0,求f(x)dx.2(x22x3)exx0(xln(1x2)3)dx(x22x3)exdx解.f(x)dx1x2ln(1x2)12[x2ln(1x2)]3xcx0x02(x24x1)exc1考虑连续性,所以c=-1+c,c=1+c111x2)12[xln(1x)]3xc22ln(1xx0x0f(x)dx22(x24x1)ex1c八.设f'(ex)asinxbcosx,(a,b为不同时为零的常数),求f(x).解.令tex,xlnt,f'(t)asin(lnt)bcos(lnt),所以f(x)[asin(lnx)bcos(lnx)]dxx[(ab)sin(lnx)(ba)cos(lnx)]c=2九.求下列不定积分:1.3x23x(2x3)dx3x23x3x23x(2x3)dx3x23xd(x23)ln3c解.3(3x22x5)(3x1)dx2.2133(3x22x5)2(3x1)dx(3x22x5)2d(3x22x5)解.21(3x22x5)2c553.ln(x1x2)1x2dx解.ln(x1x2)dxln(xx1)dln(xx1)1ln(xx1)c222221x24.xdx(1x2x21)ln(1x21)解.dln(1x1)ln|ln(1x1)|cxdx22(1x2x21)ln(1x21)ln(1x21)十.求下列不定积分:1.xarctanxdx(1x)2解.xarctan(1x)1arctanx1xdx22d(1x2)arctanxd(1x2)1(1x)222212a1rctaxn2x21x2darctanx12a1rctaxnx1111dx(1x2)222令xtant12a1rctaxnx1costdt1arctanx11cos2tdt2221x22221arctanx11tsin2tcarctanx1sintcostc1aextanx121x24821x2441aextanx1arctanx141xxc21x2422.arcsinx1xdxxarcsin解.令t,则xtant21xarcsin1xdxtdtan2tttan2ttan2tdtttan2ttanttcxxxxxarcsinxarcsinc(1x)arcsinxc1x1x1x3.arcsinx1x2dx1x2x2解.arcsinx1xdx令xsint1sin2costdtt(csc2t1)dt2ttcost1x2x2sin2ttcottdttdttcottcottdt1t2c2tcottln|sint|1t2c21x2arcsinxln|x|1(arcsinx)2cx24.arctanxdx)2x2(1xarctanxdx令xtanttsectdtt(csct1)dt22解.x2(1x2)tan2tsect2tcsc2tdttdttdcott1t2tcottcotdt1t222tcottln|sint|1t2carctanxln||1(arctanx)2cx2x21x2arctanx1x21(arctanx)2clnx21x22十一.求下列不定积分:x34xdx21.解.dx令x2sint8sint2cost2costdt32sinx34x233tcos2tdt323232(1cos2t)cos2tdtdcostcos3tcos5tc35(4x2)21(4x2)2c435352.2ax2x解.x2aattansecasecttantdtaat1cos2t2令xasectdtcostx2aatantatcx2a2aarccoscx3.ex(1)exdx1e2x解.ex(1)dx令extt(1t)dt1tdt令tsinu1sinucosuduex1t1tcosu1et2x22ucosucarcsinex1e2xcxdxx4.(a>0)2axx解.dx令ux2du令u2asint8asin4tdt2xu42ax2au2(1cos2t)2dt2a2(12cos2tcos22t)dt=8a24=2a2t2a2sin2t2a21cos4tdt3a2t2a2sin2tsin4tca424=3a2t4a2sintcosta2sintcost(12sin2t)c=3a2t3a2sintcost2a2sin3tcostc=3a2arcsinx3a2x2ax2a2xx2axc2a2a2a2a2a2ax3ax=3a2arcsinx(2ax)c2a2十二.求下列不定积分:1.dxsinx1cosx解.sinxdxsin2x1cosxd(1cosx)2d1cosxdxsinx1cosxsin2x1cosx1cos2x令1cosxu22u2(2u2)dudu1(u21)2(11)du11ln|2u|c222uu22u2uln|21cosx|c121cosx11cosx222.2sinxdx2cosx解.2sinxdx212cosx2dtdxd(2cosx)2cosx2cosx2ln|2cosx|22dtln|2cosx|1t2令tanxt21t23t221t24t41arctanln|2cosx|carctan(tanx)ln|2cosx|c=333323.sinxcosxsinxcosxdx解.sinxcosxdx112sinxcosx1sinxcosxdxsinxcosx21=2(sinxcos)21dx1(sinxcosx)dxsinxcosx212sinxcosx1dxd(x)1(sinxcosx)24=2sin(x)44=12(sinxcosx)42ln|tan()|c28x十三.求下列不定积分:1.xdx1xx解.dx令xt2t21t23d(1t3)4xdt1tc31xx31t3341x2c332.ex1dxex1解.ex1ex1dxex1e2x1sect1tantdt(sect1)dtdx令exsecttantln|secttant|tcln(exe2x1)arccos1cex3.x1arctanx1dxxttant22x1arctanx1tantt2secttantdt2ttantdt2t1cos2tdttdx22sec2tcosx22dt2tdt2tdtantt22ttant2tantdtt2tcos2t2ttant2ln|cost|t2c2x1arctanx1ln|x|(arctanx1)2c4一元函数积分学(定积分)bf(x)(x)dx0,则f(x)0.一.若f(x)在[a,b]上连续,证明:对于任意选定的连续函数(x),均有a证明:假设f()0,a<<b,不妨假设f()>0.因为f(x)在[a,b]上连续,所以存在>0,使得在[-,+]上2(x)2,其它地方(x)=0.所以bf(x)(x)dxf(x)(x)dxm20.2abf(x)(x)dx0矛盾.所以f(x)0.和adx11I二.设为任意实数,证明:dx=4.021(tanx)021(cotx)dx4=f(sinx)f(sinx)f(cosx)f(cosx)f(sinx)f(cosx)dx证明:先证:2020令t=x,所以2f(sinx)f(sinx)f(cosx)f(cost)dxf(cost)f(sint)d(t)0202f(cost)f(cosx)f(cosx)f(sinx)f(cost)f(sint)dtdx=2200于是f(sinx)f(sinx)f(cosx)dxf(sinx)f(cosx)f(cosx)f(sinx)f(sinx)f(cosx)dx02dx22200(sinx)f(cosx)ff(sinx)f(cosx)dx2dx=2200dxf(sinx)f(sinx)f(cosx)f(cosx)f(sinx)f(cosx)dx.所以204=2011dx(cosx)(cos)(sinx)所以Idx021(tanx)22x4sinxcosx001dx1同理I021(cotx)4.三.已知f(x)在[0,1]上连续,对任意x,y都有|f(x)-f(y)|<M|x-y|,证明kMf1f(x)dx1n2nnn0k11kkkkf(x)dxnf(x)dx,n()nn()fdx1证明:0fnnk1nk1nk1k1k1nn1f(x)dx1nf()|f(x)f(k)dx|kknnnn1nk0k1k1nnf(x)f(k)dxnM(xk)dxnkknn1nk1kk1k1nn1MkMkMnxdxnn1n2n22nkk1k1n11Itannxdx,n为大于1的正整数,证明:2(n1)I2(n1).四.设40nn1tn证明:令t=tanxItannxdxdt,则4001t2n1t2t>0,(0<t<1).所以1t2111221't1t2(1t2)2因为1于是111tnt2dt11tn1tdtndt22000112n2(n1).1立即得到2(n1)In五.设f(x)在[0,1]连续,且单调减少,f(x)>0,证明:对于满足0<<<1的任何,,有f(x)dxf(x)dx0xf(t)dtF()),F(x)xf(t)dtf(t)dt0.证明:令(x00F'(x)f(t)dtf(x)[f(t)f(x)]dt0,(这是因为t,x,且f(x)单减).00f(x)dxf(x)dxF()F()0所以,立即得到0f''(x)六.设f(x)在[a,b]上二阶可导,且<0,证明:bf(x)dx(ba)fab2af(x)f(t)f'(t)(xt)f''()(xt)f(t)f'(t)(xt)2证明:x,t[a,b],2!ab,所以f(x)fababx2abt令f'222abxababbf(x)dxfdxf'dxbb二边积分222aaaf(x)dx1f(x)dx00xf(t)dtF(x)f(t)dtx0000F'(x)f(x)f(x)0,所以F(x)单增ftdt1f(t)dt0,即()100f(x)dx1f(x)dx00f(x)dxf();方法二:由积分中值定理,存在[0,],使01f(x)dxf()(1)由积分中值定理,存在[,1],使因为,所以f()f().所以1f(x)dxf(x)dx1f(x)dxff()()(1)200f()f()(1)f()f(x)dx20f'(x)在[a,b]内存在而且可积,f(a)=f(b)=0,试证八.设f(x)在[a,b]上连续,:|f(x)|1b|f'(x)|dx,(a<x<b)2a证明:|f'(x)|f'(x)|f'(x)|,所以x|f'(t)|dtf(x)f(a)x|f'(t)|dt,aax|f'(t)|dtf(x)x|f'(t)|dt;即即aab|f'(t)|dtf(b)f(x)b|f'(t)|dtxxb|f'(t)|dtf(x)b|f'(t)|dtxx所以b|f'(t)|dt2f(x)b|f'(t)|dtaa即|f(x)|1b|f'(x)|dx,(a<x<b)2a九.设f(x)在[0,1]上具有二阶连续导数,且f(0)f(1)0,f(x)0,试证:f''(x)f''(x)dx41f(x)0证明:因为(0,1)上f(x)0,可设f(x)>0因为f(0)=f(1)=0x0(0,1)使f(x)=0max(f(x))0x1f''(x)1f''(x)dx11所以0f(x)dx>fx()(1)00在(0,x)上用拉格朗日定理0f(x)f'()(0,x)00x0在(x1)上用拉格朗日定理0,f(x)f'()1x(x,1)000所以1f''(x)dxf''(x)dxf''(x)dxf'()f'()0f(x)x(1x)4f(x)0000ab)2ab((因为)211f''(x)dx4所以f(x)00由(1)得f''(x)dx41f(x)0十.设f(x)在[0,1]上有一阶连续导数,且f(1)-f(0)=1,试证:1[f'(x)]2dx10[f'(x)]2dx1[f'(x)]dx111dx(f'(x)1dx)2(f(1)f(0))211证明:22000000[0,2],取使|f()|=max|f(x)|(0x2)使|f()||f(x)|.所以a|(x1)f(x)dx||x1||f(x)|dx|f()||x1|dx|f()|2220005一元函数积分学(广义积分)一.计算下列广义积分:2(2)1(x21)(x24)(3)exdxdxdx(1)0(ex1)13(1x2)320(4)1sin(lnx)dx(5)11dx(6)arctanxdx2xx21(1x2)3200解.22d(ex1)dx3(e21)23exdxlim0(1)20(ex1)3(ex1)3111(x21)(x24)dxlim11b13x1x24dx12(2)(3)20b0dx(1x2)3211,所以dx因为limx3x积分收敛.所以(1x2)2(1x2)2330=2sectdxdx2令xtant2(1x2)32dt22costdt202sec3t0(1x2)3201sin(lnx)dxlim1sin(lnx)dxlim1(xsin(lnx)xcos(ln))x11(4)220001dxsecttant1dt(5)(6)2xx212ttsectan33arctanxtsec2t2dx32dttcostdt12sec3t2(1x2)0006微分中值定理一.设函数f(x)在闭区间[0,1]上可微,对于[0,1]上每一个x,函数f(x)的值都在开区间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 喷涂喷焊操作工安全生产规范模拟考核试卷含答案
- 露天矿物开采辅助工安全防护强化考核试卷含答案
- 罐头杀菌工安全技能模拟考核试卷含答案
- 公关员岗前技术基础考核试卷含答案
- 客服实习实训工作计划
- 车辆回购合同范本
- 施工员合同协议书
- 铁路物资合同范本
- 技能培训合同协议
- 采购代发合同协议
- 水利工程前沿讲座
- (高清版)DB44∕T 1015-2012 《冻罗非鱼加工技术规范》
- 食品工艺学期末考试题库及答案
- 眼科加速康复外科理念临床应用与优化路径
- 竹利久一次性卫生筷项目投资可行性研究分析报告(2024-2030版)
- 7《大雁归来》课件
- 2025秋季学期国开电大本科《管理英语3》一平台机考真题及答案总题库珍藏版
- 教育培训课程开发及实施合作协议
- 硫磺销售安全管理制度
- 2.2更好发挥政府作用 2025学年高一政治示范课件(统编版必修2)
- 人工智能概论 课件 第1-3章 人工智能的概念、内容和方法;人工智能的应用与发展概况;图搜索与问题求解
评论
0/150
提交评论