电压调整电路行业发展基本情况_第1页
电压调整电路行业发展基本情况_第2页
电压调整电路行业发展基本情况_第3页
电压调整电路行业发展基本情况_第4页
电压调整电路行业发展基本情况_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

电压调整电路行业发展基本情况半导体行业全球市场空间超50亿美元,国内增速更快受益于三大下游市场扩容,湿电子化学品需求量有望实现稳定增速。近年来,半导体、显示面板、光伏三大板块下游市场规模不断扩大,产业迎来高速发展,带动湿电子化学品市场规模平稳增长。据智研咨询数据,2020年全球湿电子化学品市场规模为50.84亿美元,受疫情影响略有下滑。国内湿电子化学品市场规模于2020年达到100.6亿元,同比增长9.2%。中低端领域国产转化率较高,产业升级主要面向G4-G5级产品。国际半导体设备和材料组织(SEMI)于1975年制定了国际统一的湿电子化学品杂质含量标准。该标准下,产品级别越高,所对应的集成电路加工工艺精细度程度越高,制程越先进。半导体领域对湿电子化学品的纯度要求较高,集中在G3、G4级水平,且晶圆尺寸越大对纯度的要求越高,12英寸晶圆制造一般要求G4级以上水平。目前国外主流湿电子化学品企业已实现G5级标准化产品的量产。国内市场半导体领域的湿电子化学品,G2、G3级中低端产品进口转化率高,因为此技术范围内国产产品本土化生产、性价比高、供应稳定等优势较为突出。G4、G5级高端产品仍有较大进口替代空间,为未来主要升级方向。集成电路对超净高纯试剂纯度的要求非常高。按照SEMI等级的分类,G1级属于低档产品,G2级属于中低档产品,G3级属于中高档产品,G4和G5级则属于高档产品。集成电路用超高纯试剂的纯度要求基本集中在G3、G4级水平,中国的研发水平与国际仍存在较大差距。湿电子化学品技术制造复杂,且品类众多,每种产品的制备要求各不相同,无法设计加工通用设备。企业必须根据不同品种的特性来确定适合的工艺路径,设计加工所需的设备,因此显著提升了制造成本和供应难度。研发能力及技术积累。湿电子化学品的生产技术包括混配技术、分离技术、纯化技术以及与其生产相配套的分析检验技术、环境处理与监测技术等。以上技术都需要企业具备研发能力和一定的技术积累。同时,下游产品的生产工艺和专用性需求不尽相同,这需要企业有较强的配套能力和一定的时间去掌握核心的配方工艺以满足不同产品的需求。国内湿电子化学品市场百舸争流。由于进入壁垒相对较低,我国湿电子化学品制造企业众多,约有40余家。其中,以江化微和格林达为首的湿电子化学品专业制造商,主要产品集中在湿电子化学品,产品种类丰富且毛利率高;以晶瑞电材和飞凯材料为代表的综合型微电子材料制造商,涉及领域更广,客户体量相对较大。此外还有例如巨化股份等大型化工企业,湿电子化学品类产品营收占比较少,具有原材料方面的优势。目前国内制造商产能主要集中在G3、G4级领域,多数已开始布局G5级产品产线,预计在2022年实现逐步放量。但目前相较于国际主流公司,国内企业产量较小。电子特种气体又称电子特气,是电子气体的一个分支,相较于传统工业气体,纯度更高,其中一些具有特殊用途。电子特气下游应用广泛,是集成电路、显示面板、太阳能电池等行业不可或缺的支撑性材料。在半导体领域,电子特气的纯度直接影响IC芯片的集成度、性能和良品率,在清洗、气相沉积成膜(CVD)、光刻、刻蚀、离子注入等半导体工艺环节中都扮演着重要的角色。电子特气可以根据其化学成分本身和用途的不同进行分类。根据化学成分的不同,电子特气可分为氟系、硅系、硼系、锗系氧化物和氢化物等几大类别。半导体市场发展迅速,为上游电子特气市场打开成长空间。根据SEMI数据,在晶圆材料328亿美元的市场份额中,电子特气占比达13%,43亿美元,是仅次于硅片的第二大材料领域。近年来,伴随下游晶圆厂的加速扩张,特气市场景气度向好,需求量有望持续扩容。根据SEMI数据,2020年全球晶圆制造电子气体市场规模为43.7亿美元。在全球产业链向国内转移的趋势下,中国电子特气市场规模在过去十年快速增长,2020年达到了173.6亿元。特气市场毛利率高、盈利能力强。在各半导体材料领域中,电子特气公司的平均毛利率处于较高水平。对比半导体产业链来看,晶圆厂的盈利能力最强,例如世界最大晶圆代工厂台积电的毛利率为51.6%,国内晶圆厂龙头中芯国际的毛利率约为30%。而对于特种气体公司来说,电子特气平均毛利率能达到近50%。世界第二的法国液化空气集团,2010年-2019年的毛利率稳定在60%-65%,而一般化工气体或大宗气体的毛利率仅在20-30%水平。国内企业电子特气毛利率相对较低,约为30%-40%,相较国际巨头有一定差距,未来成长空间广阔。伴随技术研发的进步和需求量的增长,电子特气厂商盈利能力有望持续升级。特种气体纯度提升为核心技术瓶颈。集成电路对电子特气的纯度有着苛刻的要求,因为在芯片加工过程中,极微量的杂质也可能导致产品重大缺陷,特种气体纯度越高,产品的良率越高、性能越优。伴随IC芯片制程技术的不断发展,产品的生产精度越来越高,用于集成电路制造的电子特气亦提出了更高的纯度要求。电子特气的纯度主要受三个因素影响:一是提纯技术。电子特气的分离和提纯原理上可分为精馏分离、分子筛吸附分离以及膜分离三大类。在实际提纯分离过程中,为提升效率和良品率,会利用多种方法进行组合,配置工艺更为复杂,还需保证产品配比精度,因此抬高了研发壁垒。二是气体检测技术。随着电子特气的纯度越来越高,对分析检测方法和仪器提出了更高的要求。目前国外电子气体的分析己经经历了离线分析、在线分析、原位分析等几个阶段,对于高纯度电子特气的分析已开发出完整的测试体系。而由于我国电子特气行业重生产而轻检测,因此分析方法和仪器同国外厂商都有一定差距。三是气体的储存和运输。高纯电子特气运输为一大难关,在储存和运输过程中要求使用高质量的气体包装储运容器、以及相应的气体输送管线、阀门和接口,以防止气体二次污染。我国加工工艺整体落后以及不符合国际规范,大部分市场被国外公司占据。专业人才缺乏,技术人员培养目前面临较大困局。电子气体生产环节较多、操作复杂,因此企业除了研发人才,还需要大量掌握生产技术、具有实际操作经验的技术人员。据统计,培养一名合格的生产技术工人至少需要2年时间,但目前国内各大院校基本未设立工业气体学科,因此企业需要花费大量时间和资金成本对新进人员进行深度培养,制约了我国企业技术创新水平的提升速度。电子特气市场正处于稳定增长阶段,从地理位置上看,亚太地区是电子特气的最大消费市场。国内电子特气相关需求一直依赖进口,主要市场由空气化工、德国林德集团、液化空气和太阳日酸等国外厂商占据,CR4约88%,形成寡头垄断的局面。国际局势叠加国内新兴产业迅速发展,本土化优势显著。新兴终端市场加速成长,国内企业经过多年技术积累有望迎来国产化全面开花。伴随俄乌战争、经济制裁等事件的频繁发生,国际局势变得更加复杂动荡。在此背景下,进口产品价格昂贵、运输不便,本土化产品供应稳定、性价比高等特点更为显著,国内下游企业逐步转向国产供应。电子特气国产化是必然趋势,将在市场化因素主导下全面加速。截至2022年Q1,我国拥有众多生产工业气体的企业,其中约一半位于华东地区。由于行业技术壁垒高且客户粘性大,短期内行业的马太效应将继续延续,但近些年国家推出的相关支持政策及法律法规有望在往来助力相关细分行业的内资企业大力发展。靶材又称为溅射靶材,是制作薄膜的主要材料。在溅射镀膜工艺中,靶材是在高速荷能粒子轰击的目标材料,可通过不同的离子光束和靶材相互作用得到不同的膜系(如超硬、耐磨、防腐的合金膜等),以实现导电和阻挡的功能。靶材主要是由靶坯、背板等部分组成,工作原理是利用离子源产生的离子,在真空中聚集并提速,用形成的高速离子束流来轰击靶材表面,发生动能交换,让靶材表面的原子沉积在基底。半导体行业产业链概况半导体产业链主要包含芯片设计、晶圆制造和封装测试三大核心环节,此外还有为晶圆制造与封装测试环节提供所需材料及专业设备的支撑产业链。作为资金与技术高度密集行业,半导体行业形成了专业分工深度细化、细分领域高度集中的特点。(一)芯片设计行业概况根据中国半导体行业协会公开信息显示,2020年度,国内芯片设计行业销售规模达到3,778.4亿元,同比增长23.34%,2015-2020年的复合增长率达到了23.32%。芯片设计未来的增长逻辑在于整个半导体行业的快速发展,主要在国产化率提高、5G以及物联网带来的新一轮机遇。(二)晶圆制造行业概况晶圆制造的工艺非常复杂,在晶圆制造中,共有七大工艺步骤,分别为氧化/扩散、光刻、刻蚀、薄膜生长、离子注入、清洗与抛光、金属化,整个生产过程可能涉及上千道加工工序。1、晶圆制造行业产业集中趋势明显由于集成电路制造业务投入金额巨大产能爬坡周期较长、技术门槛要求较高等特征,整个集成电路制造行业的产业集中度逐渐提高。从集成电路制造产能厂商分布来看,近年来集成电路制造厂商所拥有的产能份额也呈现出较为明显的集中趋势,其中,排名前五的集成电路厂商产能份额由2009年中的36%升至2020年末的54%,排名前十的集成电路厂商产能份额由2009年中的54%升至2020年末的70%。从晶圆制造产能地域分布来看,根据ICInsight统计,截至2020年12月,中国台湾和韩国集成电路制造产能占比最高,分别为约450万片/月和410万片/月(等效8英寸),占比分别约为21.63%和19.71%,中国大陆集成电路制造产能约为330万片/月,占比约为15.87%。2、晶圆制造行业高端制程产能集中于中国台湾和韩国,中国大陆仍存在较为明显的差距从集成电路制造制程的地域分布来看,根据ICInsight统计,截至2020年12月,小于10nm制程的产能均集中于中国台湾和韩国地区,中国大陆集成电路制造产能仍以20nm以上为主。3、受益于全球半导体需求,集成电路制造行业投资预计大幅增加根据美国半导体行业协会(SIA)统计,目前全球半导体需求正在高位,而集成电路产能不足和芯片短缺已经波及多个行业。由于通常集成电路生产线的建设平均需要耗费18-24个月,短期内集成电路制造厂商充分利用现有产能。自2020年12月起,集成电路厂商的平均产能利用率甚至超过了95%。长期来看,自2021年开始,集成电路制造行业已经展现出明显的高投资趋势。2021年全球半导体新建产线投资规模也将达到创纪录的1,480亿美元,较2020年增长超过30%。并且预计2021年至2025年半导体制造行业投资规模平均为1,560亿美元,较2016年至2020年的年均投资规模970亿美元大幅增长61%。半导体材料景气持续,市场空间广阔半导体是指常温下导电性能介于导体与绝缘体之间的材料。无论从科技或经济发展的角度来看,半导体都至关重要。2010年以来,全球半导体行业从PC时代进入智能手机时代,成为全球创新最为活跃的领域,广泛应用于计算机、消费类电子、网络通信和汽车电子等核心领域。半导体产业主要由集成电路、光电子、分立器件和传感器组成,据WSTS世界半导体贸易统计组织预测,到2022年全球集成电路占比84.22%,光电子器件、分立器件、传感器占比分别为7.41%、5.10%和3.26%。半导体工艺复杂,技术壁垒极高。芯片生产大体可分为硅片制造、芯片制造和封装测试三个流程。其中硅片制造包括提纯、拉单晶、磨外圆、切片、倒角、磨削、CMP、外延生长等工艺,芯片制造包括清洗、沉积、氧化、光刻、刻蚀、掺杂、CMP、金属化等工艺,封装测试包括减薄、切割、贴片、引线键合、模塑、电镀、切筋成型、终测等工艺。整体而言,硅片制造和芯片制造两个环节技术壁垒极高。硅提纯:目前多晶硅厂商多采用三氯氢硅改良西门子法进行多晶硅生产。具体工艺是将氯化氢和工业硅粉在沸腾炉内合成三氯氢硅,通过精馏进一步提纯高纯三氯氢硅,后在1100℃左右用高纯氢还原高纯三氯氢硅,生成多晶硅沉积在硅芯上,进而得到电子级多晶硅。拉单晶:目前8寸和12寸硅片大多通过直拉法制备,部分6寸和8寸硅片则通过区熔法制得。直拉法是将高纯多晶硅放入石英坩埚内,通过外围的石墨加热器加热至1400℃,随后坩埚带着多晶硅融化物旋转,将一颗籽晶浸入其中后,由控制棒带着籽晶作反方向旋转,同时慢慢地、垂直地由硅融化物中向上拉出,并在拉出后和冷却后生长成了与籽晶内部晶格方向相同的单晶硅棒。区熔法利用高频线圈在多晶硅棒靠近籽晶一端形成熔化区,移动硅棒或线圈使熔化区超晶体生长方向不断移动,向下拉出得到单晶硅棒。切片:单晶硅棒研磨成相同直径,然后根据客户要求的电阻率,多采用线切割将晶棒切成约1mm厚的晶圆薄片。倒角:用具备特定形状的砂轮磨去硅片边缘锋利的崩边、棱角和裂缝等,可防止晶圆边缘碎裂,增加外延层和光刻胶层在晶圆边缘的平坦度。磨削:在研磨机上用磨料将切片抛光到所需的厚度,同时提高表面平整度。其目的在于去除切片工序中硅片表面因切割产生的机械应力损伤层和各种金属离子等杂质污染。清洗:为了解决硅片表面的沾污问题,实现工艺洁净表面,多采用强氧化剂、强酸和去离子水进行清洗。薄膜沉积:即通过晶核形成、聚集成束、形成连续的膜沉积在硅片沉底上。薄膜沉积按照原理可分为物理工艺(PVD)和化学工艺(CVD)。集成电路制造中使用最广泛的PVD技术是溅射镀膜,其基本原理是在反应腔高真空度背景下带正电的氩离子在电场作用下,轰击到靶材的表面,撞击出靶材的原子或分子,沉积在硅片表面。化学气相沉积技术主要是利用含有薄膜元素的一种或几种气相化合物或单质、在衬底表面上进行化学反应生成薄膜。氧化:清洁完成后将晶圆置于800-1200℃的高温环境下,通过氧气或蒸气在晶圆表面形成二氧化硅层,以保护晶圆不受化学杂质影响、避免漏电流进入电路、预防离子植入过程中的扩散以及防止晶圆在刻蚀时滑落。光刻:光刻技术用于电路图形生成和复制,是半导体制造最为关键的技术,耗时占IC制造50%,成本占IC制造1/3。其主要流程包括清洗、涂胶、前烘、对准、曝光、后烘、显影、刻蚀、光刻胶剥离等,在光刻过程中,需在硅片上涂一层光刻胶,经紫外线曝光后,光刻胶发生变化,显影后被曝光的光刻胶可以被去除,电路图形由掩模版转移到光刻胶上,在经过刻蚀后电路图形即由掩模版转移到硅片上。刻蚀:是半导体制造工艺中的关键步骤,对于器件的电学性能十分重要。利用化学或物理方法有选择地从硅片表面去除不需要的材料,目标是在涂胶的硅片上正确地复制掩模版图形。按照刻蚀工艺划分,刻蚀主要分为干法刻蚀和湿法刻蚀,目前干法刻蚀在半导体刻蚀中占比约90%,而干法刻蚀又可分为化学去除、物理去除及化学物理混合去除三种方式,性能各有优劣。掺杂:在半导体晶圆制造中,由于纯净硅的导电性能很差,需要加入少量杂质使其结构和电导率发生变化,从而变成一种有用的半导体,即为掺杂。目前可通过高温热扩散法和离子注入法进行掺杂,其中离子注入法具备精确控制能量和剂量、掺杂均匀性好、纯度高、低温掺杂等优点,目前已成为0.25微米特征尺寸以下和大直径硅片制造的标准工艺。CMP:是集成电路制造过程中实现晶圆表面平坦化的关键工艺,其主要工作原理是在一定压力及抛光液的存在下,被抛光的晶圆对抛光垫做相对运动,借助纳米磨料的机械研磨作用与各类化学试剂的化学作用之间的高度有机结合,使被抛光的晶圆表面达到高度平坦化、低表面粗糙度和低缺陷的要求。金属化:在制备好的元器件表面沉积金属薄膜,并进行微细加工,利用光刻和刻蚀工艺刻出金属互连线,然后把硅片上的各个元器件连接起来形成一个完整的电路系统,并提供与外电路连接点的工艺过程。半导体行业面临的机遇与挑战(一)半导体行业面临的机遇1、国家大力支持半导体产业发展半导体产业是信息技术产业的核心,也是经济发展的支柱性产业,在实现制造业升级、保障国家安全等方面发挥着重要的作用。但我国半导体产业起步较晚,自给率偏低,长期依赖于进口。在我国经济社会发展需求和全球贸易争端的背景下,半导体产业得到了国家和社会各界越来越多的重视。近年来,国家为支持半导体产业发展,出台了一系列财税减免、产业规划、知识产权保护相关的政策法规,具体包括《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》《制造业设计能力提升专项行动计划(2019-2022年)》《关于集成电路设计和软件产业企业所得税政策的公告》《新时期促进集成电路产业和软件产业高质量发展的若干政策》等,政策法规为业内企业的发展提供了充分的保障和支持,为行业发展注入了新动能。2、半导体行业下游市场需求持续增长随着数字化浪潮的到来,传统产业转型升级产生了大量对半导体产品的应用需求,下游广阔的应用领域稳定支撑着半导体行业的持续发展。随着5G、AI、物联网、自动驾驶、VR/AR等新一轮科技逐渐走向产业化,未来十年中国半导体行业有望迎来进口替代与成长的黄金时期,逐步在全球半导体市场的结构性调整中占据举足轻重的地位。3、全球半导体产业向中国大陆转移半导体行业历史上已经历了两次空间上的产业转移:第一次为上世纪70代从美国向日本转移,第二次为上世纪80年代向韩国与中国台湾地区转移。目前,半导体行业正在迎来第三次产业转移,即向中国大陆转移。下游市场需求、行业发展和政策支持等因素是推动产业转移的重要因素。随着第三次产业转移的不断深入,我国半导体行业将迎来一轮发展机遇期,不断实现不同领域产品的进口替代。(二)半导体行业面临的挑战1、半导体行业国际竞争力有待提升半导体行业国际巨头经历了漫长的发展历程,在技术储备、口碑积淀、管理经验、市场占有率等方面具有先发优势。国内半导体企业提升国际竞争力,追赶国际巨头需要付出更多的努力并经历一定的时间周期。2、半导体行业高端人才存在一定缺口半导体行业是典型的技术密集型行业,且涉及的技术横跨多个学科领域,对研发人员的专业水平、创新能力和研发经验的要求较高。我国半导体产业起步较晚,各领域的人才储备严重不足,尽管随着国家对半导体行业愈发重视,相关人才的培养和引进力度不断加大,但较长的人才培养周期决定了我国在未来一段时间内高端专业人才储备缺口仍然较大,这在一定程度上制约了我国半导体产业在高端领域的发展。半导体细分行业概况(一)分立器件行业概况分立器件是指具有单一功能的电路基本元件,如二极管、晶体管等,主要实现电能的处理与变换,是半导体市场重要的细分领域。受益于国家产业政策对新兴产业的大力支持和对传统行业的升级改造,我国半导体分立器件行业的市场规模稳步增长。2018年度至2020年度,我国半导体分立器件市场销售规模持续增长。根据中国半导体行业协会统计,2020年度我国半导体分立器件销售额达2,966.3亿元,同比增长7.0%。根据中国半导体行业协会预测,我国半导体分立器件市场销售规模将在2021年至2023年度继续保持增长,2021年度、2022年度和2023年度预测销售额分别为3,371.5亿元、3,879.6亿元和4,427.7亿元,分别较上年同期增加13.7%、15.1%和14.1%。(二)功率半导体行业概况能够进行功率处理的半导体器件为功率半导体器件,功率半导体是电子装置中电能转换与电路控制的核心,典型的功率处理功能包括变频、变压、变流、功率放大和功率管理等。功率半导体器件主要用于电力设备的电能变换和电路控制,是弱电控制与强电运行间的桥梁。除保证设备正常运行以外,功率半导体器件还起到有效的节能作用。功率半导体可以分为功率IC和功率分立器件两大类,其中功率分立器件主要包括二极管、晶闸管、晶体管等产品。根据MordorIntelligence统计,2020年度,全球功率半导体市场规模为379.0亿美元,并且预计到2026年度,全球功率半导体市场规模将达到460.2亿美元,2020年度至2026年度,全球功率半导体市场规模年华增长率为3.17%。MOSFET全称金属氧化物半导体场效应管,是一种可以广泛使用在模拟与数字电路的场效应晶体管。MOSFET具有高频、驱动简单、抗击穿性好等特点,应用范围涵盖电源管理、计算机及外设设备、通信、消费电子、汽车电子、工业控制等多个领域。根据YoleDeveloppement统计,2020年度,全球MOSFET市场规模达到75亿美元,并且预测2020年度至2026年,全球MOSFET市场将会达到年化3.8%的增长。2020年度,用于消费品市场的MOSFET占据37%的市场份额,是目前占比最高的应用领域,但汽车应用市场,特别是电动汽车应用市场的爆发将会极大带动MOSFET的应用,预计截至2026年,用于包括电动汽车在内的汽车市场的MOSFET占比将达到32%。IGBT全称绝缘栅双极晶体管,是由双极型三极管BJT和MOSFET组成的复合全控型电压驱动式功率器件。IGBT具有电导调制能力,相对于MOSFET和双极晶体管具有较强的正向电流传导密度和低通态压降。IGBT的开关特性可以实现直流电和交流电之间的转化或者改变电流的频率,有逆变和变频的作用,可以应用于逆变器、变频器、开关电源、照明电路、牵引传动等领域。根据YoleDeveloppement统计,2020年度,全球IGBT市场规模达到54亿美元,并且预测2020年度至2026年,全球IGBT市场将会达到年化7.5%的增长。2020年度,IGBT最大的应用领域为工业和家用领域。预计受益于碳减排等政府政策带来的电动汽车对内燃机汽车的替代趋势,应用于电动汽车领域的IGBT市场规模在2020年度至2026年度的年化增幅将达到23%,截至2026年,用于电动汽车的IGBT市场份额占比将超过2020年度市场规模占比的一倍占据37%的市场份额市场规模电动汽车,占比在2026年将超过2020年度占比的一倍。(三)数字三极管行业概况与普通三极管相比,数字三极管是将三极管和一个或两个偏置电阻R1和R2集成在同一款芯片上,类同于小规模集成电路。数字三极管的R1电阻主要用来稳定三极管的工作状态,R2电阻主要用来吸收降低输入端的漏电流和噪声,电阻R1和R2有不同的阻值搭配,形成了丰富的产品组合。数字三极管以中小功率为主,当前市场上主流数字三极管产品的最大输出电流为500mA。数字三极管技术发展的趋势是芯片尺寸向小型化方向发展,产品的输出电流不断增大,电阻要求更加精准,同时增加R1和R2的电阻组合,以满足客户使用时不同输入电压和电流的要求。数字三极管使用方便,同时可以节省外围使用电路的空间,在手机等对内部空间要求比较严格的电子产品中应用广泛。手机等移动终端对空间要求较高,为了节省空间,在电路设计时将更多选择将电阻集成在三极管内部,因此,随着手机等移动终端的发展,数字三极管的市场需求将越来越大。据公开资料显示,2019年全球包括三极管、MOSFET和IGBT在内整个晶体管市场规模约为138.27亿美元,2020年则为147.88亿美元,同比增长6.95%。从竞争格局看,数字三极管国内市场参与者主要包括燕东微、日本Phenitec、杭州友旺电子等,市场格局相对固定。(四)ECM前置放大器行业概况ECM(ElectretCondenserMicrophone,驻极体电容传声器)麦克风是一种将声音转换为电信号的电子器件,因外围电路结构简单、使用灵活、灵敏度高、指向性好和性价比高等特点,广泛应用于各类智能终端上,如耳机、音箱、遥控器和电视机等。外界的声波信号使驻极体薄膜发生振动,振动使驻极体与另一极板的距离发生变化,进而使由驻极体振膜和另一极板组成的电容器两端的电压放生变化,ECM前置放大器将这一电压信号采集放大后输出。ECM前置放大器具有工作电压范围广、功耗低和外围配置简单等特点,是ECM麦克风的核心组成部分,其参数优劣决定了ECM麦克风的性能高低。目前麦克风领域主要有两条技术路线,分别为ECM麦克风和MEMS(微型机电系统)麦克风。其中MEMS麦克风为新兴路线,其基于MEMS技术将电容器集成制造在硅芯片上,与ECM麦克风相比,具有体积小、一致性好、抗干扰能力强和可使用回流焊技术进行表面贴装等优点,近年来在智能手机和平板电脑等消费类电子产品中得到越来越多的应用。但由于二者各具特点,将在较长时期内共存。ECM麦克风由于其指向性强、工作电压范围广和性价比高等特点,广泛应用于专业音频、语音声控等领域。经过长期发展,ECM前置放大器业内已围绕放大器外形尺寸和电流大小等参数开发出一系列产品。ECM前置放大器今后将向更高的增益、更高的信噪比和更高的参数一致性等方向发展,以获得更高的拾音能力。同时,ECM前置放大器在技术上还呈现小型化趋势,以适应更小更薄的封装。根据YoleDeveloppement预测,ECM麦克风、MEMS麦克风、微型扬声器和音频IC市场规模2017年-2022年复合年增长率将达到6%,到2022年市场规模将达到200亿美元。新兴的MEMS麦克风和ECM麦克风由于各具特点,将在较长时期内共存。由于ECM麦克风在专业音频和语音声控等领域具有的独特应用优势和性价比优势,以及TWS耳机、语音识别组件等下游市场发展带来的麦克风总体市场需求量的上升,根据取得的来自用户端的反馈,近年来ECM麦克风的需求量呈增长趋势。此外,ECM前置放大器市场集中度较高,主要供应商包括燕东微、韩国RFsemi等,随着行业成熟度的提高,市场集中度可能进一步提升,对于出货量较大,已形成规模经济优势的厂商,将占据越来越大的市场份额。(五)浪涌保护器件行业概况浪涌保护器件,是一种为各种电子设备、仪器仪表、通讯线路提供安全防护的半导体器件。TVS是一种二极管形式的高效能浪涌保护器件。当TVS的两极受到反向瞬态高能量冲击时,它能在极短的时间内将其两极间的高阻抗变为低阻抗,吸收高达数千瓦的浪涌功率,使两极间的电压钳位于一个预定值,有效地保护电子线路中的精密元器件,使其免受各种浪涌脉冲的损坏。普通的TVS在20世纪80年代开始出现,由单个PN结构成,结构单一,工艺简单。与大多数二极管正向导通的特性不同,其基于反向击穿特性,通过对浪涌的快速泄放,可以起到对电子产品的保护作用,对初级浪涌防护效果较好。普通TVS主要采用台面结构技术。21世纪初期以来,普通的TVS因性能、精度、灵敏度等方面的限制已无法满足集成电路芯片发展中不断提高的防静电和浪涌冲击保护要求,于是兼具漏电小、钳位电压低、响应时间快、抗静电能力强且能够防浪涌等特点的新型TVS在近十几年开始出现并不断创新与升级。新型TVS对结构设计和工艺要求更高,结构更加复杂,一般设计成多路PN结集成结构,采用多次外延、双面扩结或沟槽设计。新型TVS能够确保小型化的集成电路芯片得到有效保护,代表着TVS小型化、更强的浪涌保护能力、更低的电容、多路集成的技术发展方向。随着半导体芯片制程的发展,集成电路芯片呈现出小型化趋势,线宽变窄,同时追求更高的集成度和更低的工作电压,致使集成电路芯片变得更加敏感,极易受到静电和浪涌冲击,造成损坏。TVS通常具有响应时间短、静电防护和浪涌吸收能力强等优点,可用于保护设备电路免受各类静电及浪涌的损伤,顺应了集成电路芯片发展的趋势和需要,广泛应用于移动通讯、个人电脑、工业电子、汽车电子等。随着下游市场需求的增长,TVS市场前景广阔。根据OMDIA发布的研究报告《TVS-ESDComponentsMarketAnalysis2021》,2020年全球TVS市场规模约为16.21亿美元,2021年全球TVS市场规模预计约为18.19亿美

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论