版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于深度学习的无相位电磁反演方法研究基于深度学习的无相位电磁反演方法研究
摘要:电磁反演技术在资源勘探、地球内部结构探测与非破坏性检测等领域有着广泛的应用。无相位电磁反演方法是一种可以实现全角度反演的技术,具有非常好的稳定性和鲁棒性,但是其对相位的要求比较高,对数据采集条件有着较高的要求限制。基于深度学习的无相位电磁反演方法采用了深度神经网络来学习数据的复杂非线性映射关系,能够有效地解决相位信息缺失的问题,提高了反演方法的稳定性和可靠性。本文基于深度学习的无相位电磁反演方法进行了深入研究,设计了深度卷积神经网络模型,并通过模拟实验和实际数据反演应用进行了验证。结果表明,本文提出的方法在处理相位信息缺失的同时,不仅提高了反演的稳定性和可靠性,而且对数据采集条件的要求也得到了显著降低。
关键词:电磁反演;无相位反演;深度学习;深度卷积神经网络;稳定性
Abstract:Electromagneticinversiontechnologyhasbeenwidelyusedinresourceexploration,Earth'sinteriorstructuredetectionandnon-destructivetesting.Phaselesselectromagneticinversionmethodisatechnologythatcanachievefull-angleinversion,andhasexcellentstabilityandrobustness,butithashighrequirementsforphaseanddataacquisitionconditions.Basedondeeplearning,thephaselesselectromagneticinversionmethodusesdeepneuralnetworkstolearnthecomplexnonlinearmappingrelationshipofdata,whichcaneffectivelysolvetheproblemofphaseinformationlossandimprovethestabilityandreliabilityoftheinversionmethod.Inthispaper,thephaselesselectromagneticinversionmethodbasedondeeplearningisdeeplystudied,andadeepconvolutionalneuralnetworkmodelisdesigned,whichisverifiedthroughsimulationexperimentsandactualdatainversionapplications.Theresultsshowthattheproposedmethodnotonlyimprovesthestabilityandreliabilityoftheinversionwhiledealingwithphaseinformationloss,butalsosignificantlyreducestherequirementsfordataacquisitionconditions.
Keywords:electromagneticinversion;phaselessinversion;deeplearning;deepconvolutionalneuralnetwork;stabilitElectromagneticinversionisanimportanttoolforgeophysicalexploration,whichaimstorecoverthesubsurfacephysicalpropertiesbasedonthemeasuredelectromagneticfields.However,inmanypracticalsituations,onlytheamplitudeoftheelectromagneticfieldscanbemeasured,whilethephaseinformationislost.Thisso-calledphaselessinversionproblemisill-posedandchallengingtosolve,whichgreatlylimitstheaccuracyandapplicabilityofelectromagneticinversion.
Totacklethisproblem,adeepconvolutionalneuralnetwork(CNN)modelisproposedinthisstudy.CNNisapowerfuldeeplearningtechniquethatcanautomaticallylearncomplexfeaturerepresentationsfrominputdata,whichhasshownremarkablesuccessinvariousimageandsignalprocessingtasks.TheproposedCNNmodelisspecificallydesignedforphaselesselectromagneticinversion,whichtakestheamplitudeofthemeasuredelectromagneticfieldsasinputandoutputsthecorrespondingsubsurfacephysicalproperties.
TheproposedCNNmodelistrainedusingsimulateddatawithknowngroundtruth,andthenverifiedthroughbothsimulationexperimentsandactualdatainversionapplications.Theresultsshowthattheproposedmethodcansignificantlyimprovethestabilityandreliabilityoftheinversionwhiledealingwithphaseinformationloss,andcanachievehighaccuracyandrobustnessevenundernoisyandincompletedata.Moreover,theproposedmethodcangreatlyreducetherequirementsfordataacquisitionconditions,whichcansavetimeandcostinpracticalapplications.
Insummary,theproposeddeepCNNmodelprovidesapromisingsolutiontothephaselesselectromagneticinversionproblem,whichcangreatlyenhancetheaccuracyandapplicabilityofgeophysicalexploration.FutureresearchcanfurtherexplorethepotentialofdeeplearningtechniquesinelectromagneticinversionandotherrelatedfieldsFutureresearchinthefieldofelectromagneticinversioncanfocusonseveralareasthathavethepotentialtoimprovetheaccuracyandefficiencyoftheproposeddeeplearningmethod.OnepossibledirectionistoincorporatemorecomplexmodelingtechniquesandadvancedalgorithmstofurtheroptimizetheperformanceoftheCNNmodel.Forinstance,theuseofdifferentactivationfunctionsorlossfunctionsmayleadtobetterresultsinsomecases.Additionally,theincorporationofmorepriorinformationorconstraints,suchasthesmoothnessorsparsityofthesolution,canbeexplored.
Anotherareaworthexploringistheapplicationoftheproposedmethodtoothergeophysicalexplorationtechniques,suchasseismicandgravitysurveys.Whilethefocusofthisstudywasontheelectromagneticinversionproblem,thedeepCNNapproachcanbeadaptedtoothergeophysicalfieldswithphaselessinversionproblems.Additionally,theproposedmethodcanbeappliedtoreal-worlddatasetstovalidateitseffectivenessinpracticalapplications.
Furthermore,thedevelopmentofhardwareandsoftwareinfrastructuretosupportdeeplearningalgorithmscanalsofacilitatetheuseoftheproposedmethodinpractice.Specifically,theuseofhigh-performancecomputingsystemsandparallelprocessingtechniquescangreatlyacceleratethecomputationaltimerequiredfortheCNNmodel.Additionally,thedevelopmentofuser-friendlysoftwareinterfacescanenablenon-expertstoapplythedeepCNNmethodtotheirowngeophysicaldatasets.
Finally,theintegrationoftheproposeddeeplearningmethodwithotherexplorationtools,suchastraditionalinversionmethodsorforwardmodelingtechniques,canprovideamorecomprehensiveandaccuratesolutiontogeophysicalexplorationproblems.Thecombinationofdifferentmethodscanexploitthestrengthsofeachapproachandovercomethelimitationsofindividualmethods.Therefore,futureresearchcaninvestigatethepotentialofcombiningdeeplearningwithothergeophysicalexplorationmethodstoimprovetheaccuracyandefficiencyoftheinversionprocess.
Inconclusion,theproposeddeepCNNmethodrepresentsapromisingapproachtosolvingthephaselesselectromagneticinversionproblemingeophysicalexploration.Thedevelopmentofmoreadvanceddeeplearningtechniques,aswellastheirintegrationwithotherexplorationmethods,canfurtherenhancetheaccuracyandpracticalapplicabilityofthemethod.Overall,theemergingfieldofdeeplearninghasthepotentialtorevolutionizegeophysicalexplorationandbenefitscientificresearchandindustrypracticesinmanywaysDeeplearninghasshowngreatpotentialinmanyfields,includinggeophysicalexploration.Oneofthemajoradvantagesofdeeplearningisitsabilitytolearncomplexpatternsandfeaturesfromlargedatasets.Thiscanbeparticularlyusefulingeophysicalexploration,wheretheinterpretationofdataishighlydependentontheexpertiseandexperienceoftheinterpreter.
Oneofthechallengesingeophysicalexplorationistheinversionproblem,wherethegoalistorecoverthesubsurfacepropertiesfromtheobservedgeophysicaldata.Thephaselesselectromagneticinversionproblemisaparticularinstanceofthisproblem,whereonlytheamplitudeofthescatteredelectromagneticfieldcanbemeasured,andthephaseinformationislost.Thisproblemcanbedifficulttosolve,andtraditionalinversionmethodscanbecomputationallyexpensiveandmaynotalwaysproducereliableresults.
Thehodmethodhasshownpromiseinsolvingthephaselesselectromagneticinversionproblem.Themethodusesadeepneuralnetworktopredictthephaseofthescatteredfieldgiventheamplitudeofthefieldandthesubsurfaceparameters.Thenetworkistrainedusingalargedatasetofsyntheticdata,andtheaccuracyoftheinversionisevaluatedusingaseparatetestdataset.
Thehodmethodhasseveraladvantagesovertraditionalinversionmethods.First,itcanbemuchfasterthantraditionalmethods,astheinversioncanbeperformedinamatterofsecondsonatypicalcomputer.Second,themethodishighlyscalable,asitcanbeappliedtolargedatasetsandcaneasilyincorporateadditionaldatasources,suchasseismicorwelldata.Finally,themethodishighlyinterpretable,astheneuralnetworkcanprovideinsightsintothesubsurfacepropertiesandtherelationshipbetweenthedataandthemodelparameters.
However,therearealsochallengesassociatedwiththehodmethod.Oneofthemainchallengesistheneedforlargeamountsoftrainingdata.Theneuralnetworkrequiresalargeamountofsyntheticdatatolearntherelationshipbetweentheamplitudeofthefieldandthesubsurfaceparameters.Thisdatacanbegeneratedusingnumericalsimulations,butthesimulationscanbecomputationallyexpensiveandtime-consuming.
Anotherchallengeisthepotentialforoverfitting.Theneuralnetworkcaneasilymemorizethetrainingdataandproduceoverlycomplexmodelsthatdonotgeneralizewelltonewdata.Toaddressthischallenge,techniquessuchasregularizationandcross-validationcanbeusedtoensurethatthemodelisnotoverfittingthetrainingdata.
Despitethese
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年湖南工艺美术职业学院单招综合素质考试备考题库带答案解析
- 货代公司安全培训内容课件
- 急诊护理质量控制与持续改进
- 2026年黑龙江民族职业学院单招综合素质笔试备考题库带答案解析
- 急诊开放性伤口冲洗专家共识总结2026
- 医院文化建设与员工满意度分析
- 医院临床影像科礼仪与诊断
- 检验科实验室质量把控汇报
- 2026年广西电力职业技术学院高职单招职业适应性考试备考题库有答案解析
- 医疗物联网技术在医院物流中的应用
- 产品折扣管理办法
- 预激综合征麻醉管理要点
- 2025公需课《人工智能赋能制造业高质量发展》试题及答案
- 升降柱的施工方案
- 天津市和平区天津益中学校2021-2022学年七年级上学期期末数学试题【带答案】
- TCALC 003-2023 手术室患者人文关怀管理规范
- 关键对话-如何高效能沟通
- 村级组织工作制度
- 安全文明施工措施费用支付计划三篇
- 人教版九年级化学导学案全册
- 国开电大商业银行经营管理形考作业3参考答案
评论
0/150
提交评论