




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGEPAGE4三角恒等式与三角不等式一、基础知识定义1角:一条射线绕着它的端点旋转得到的图形叫做角。角的大小是任意的。若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。定义2角度制:把一周角360等分,每一等分为一度。弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。若圆心角的弧长为L,则其弧度数的绝对值|α|=,其中r是圆的半径。定义3三角函数:在直角坐标平面内,把角α的顶点放在原点,始边与x轴的正半轴重合,在角的终边上任意取一个不同于原点的点P,设它的坐标为(x,y),到原点的距离为r,则正弦函数sinα=,余弦函数cosα=,正切函数tanα=,余切函数cotα=,正割函数secα=,余割函数cscα=定理1同角三角函数的基本关系式,倒数关系:tanα=,sinα=,cosα=;商数关系:tanα=;乘积关系:tanα×cosα=sinα,cotα×sinα=cosα;平方关系:sin2α+cos2α=1,tan2α+1=sec2α,cot2α+1=csc2α.定理2诱导公式(Ⅰ)sin(α+π)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,cot(π+α)=cotα;(Ⅱ)sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα,cot(-α)=cotα;(Ⅲ)sin(π-α)=sinα,cos(π-α)=-cosα,tan=(π-α)=-tanα,cot(π-α)=-cotα;(Ⅳ)sin=cosα,cos=sinα,tan=cotα(奇变偶不变,符号看象限)。定理3正弦函数的性质,根据图象可得y=sinx(x∈R)的性质如下。单调区间:在区间上为增函数,在区间上为减函数,最小正周期:2.奇偶性:奇函数有界性:当且仅当x=2kx+时,y取最大值1,当且仅当x=3k-时,y取最小值-1,值域为[-1,1]。对称性:直线x=k+均为其对称轴,点(k,0)均为其对称中心。这里k∈Z.定理4余弦函数的性质,根据图象可得y=cosx(x∈R)的性质。单调区间:在区间[2kπ,2kπ+π]上单调递减,在区间[2kπ-π,2kπ]上单调递增。最小正周期:2π。奇偶性:偶函数。有界性:当且仅当x=2kπ时,y取最大值1;当且仅当x=2kπ-π时,y取最小值-1。值域为[-1,1]。对称性:直线x=kπ均为其对称轴,点均为其对称中心。这里k∈Z.定理5正切函数的性质:由图象知奇函数y=tanx(xkπ+)在开区间(kπ-,kπ+)上为增函数,最小正周期为π,值域为(-∞,+∞),点(kπ,0),(kπ+,0)均为其对称中心。定理6两角和与差的基本关系式:cos(αβ)=cosαcosβsinαsinβ,sin(αβ)=sinαcosβcosαsinβ;tan(αβ)=两角和与差的变式:三角和的正切公式:定理7和差化积与积化和差公式:sinα+sinβ=2sincos,sinα-sinβ=2sincos,cosα+cosβ=2coscos,cosα-cosβ=-2sinsin,sinαcosβ=[sin(α+β)+sin(α-β)],cosαsinβ=[sin(α+β)-sin(α-β)],cosαcosβ=[cos(α+β)+cos(α-β)],sinαsinβ=-[cos(α+β)-cos(α-β)].定理8二倍角公式:sin2α=2sinαcosα,cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α,tan2α=三倍角公式及变式:,,定理9半角公式:sin=,cos=,tan==定理10万能公式:,,定理11辅助角公式:如果a,b是实数且a2+b20,则取始边在x轴正半轴,终边经过点(a,b)的一个角为β,则sinβ=,cosβ=,对任意的角α.asinα+bcosα=sin(α+β).定理12正弦定理:在任意△ABC中有,其中a,b,c分别是角A,B,C的对边,R为△ABC外接圆半径。定理13余弦定理:在任意△ABC中有a2=b2+c2-2bcosA,其中a,b,c分别是角A,B,C的对边。定理14射影定理:在任意△ABC中有,,定理15欧拉定理:在任意△ABC中,,其中O,I分别为△ABC的外心和内心。定理16面积公式:在任意△ABC中,外接圆半径为R,内切圆半径为r,半周长则定理17与△ABC三个内角有关的公式:(1)取x=0,得=0,所以sin所以(k∈Z),即=(2k+1)(k∈Z).又>0,取k=0时,此时f(x)=sin(2x+)在[0,]上是减函数;取k=1时,=2,此时f(x)=sin(2x+)在[0,]上是减函数;取k=2时,≥,此时f(x)=sin(x+)在[0,]上不是单调函数,综上,=或2。7.三角公式的应用。例7已知sin(α-β)=,sin(α+β)=-,且α-β∈,α+β∈,求sin2α,cos2β的值。【解】因为α-β∈,所以cos(α-β)=-又因为α+β∈,所以cos(α+β)=所以sin2α=sin[(α+β)+(α-β)]=sin(α+β)cos(α-β)+cos(α+β)sin(α-β)=,cos2β=cos[(α+β)-(α-β)]=cos(α+β)cos(α-β)+sin(α+β)sin(α-β)=-1.例8已知△ABC的三个内角A,B,C成等差数列,且,试求的值。【解】因为A=1200-C,所以cos=cos(600-C),又由于=,所以=0。解得或。又>0,所以。例9求证:tan20+4cos70=【解】tan20+4cos70=+4sin20例10证明:分析:等号左边涉及角7x、5x、3x、x右边仅涉及角x,可将左边各项逐步转化为、的表达式,但相对较繁.观察到右边的次数较高,可尝试降次.证明:因为 从而有 评述:本题看似“化简为繁”,实质上抓住了降次这一关键,很是简捷.另本题也可利用复数求解.令,展开即可.已知证明:思路分析:本题左边为n项的和,右边为2项之差,故尝试将左边各项“裂”成两项之差,并希冀能消去其中许多中间项.证明: 同理 …… 评述:①本题裂项技巧也可通过数学归纳法获得.②“裂项相消”在解题中具有一定的普遍性,类似可证下列各题:.例13设的内角所对的边成等比数列,则的取值范围是()A.B.C.D.[解]设的公比为,则,而.因此,只需求的取值范围.因成等比数列,最大边只能是或,因此要构成三角形的三边,必需且只需且.即有不等式组即解得从而,因此所求的取值范围是.故选C例14△ABC内接于单位圆,三个内角A、B、C的平分线延长后分别交此圆于A1、B1、C1, 则的值为() A.2 B.4 C.6 D.8 解:如图,连BA1,则AA1=2sin(B+ 同理 原式=选A.例15若对所有实数,均有,则().、;、;、;、.解:记,则由条件,恒为,取,得,则为奇数,设,上式成为,因此为偶数,令,则,故选择支中只有满足题意.故选D例16已知是偶函数,则函数图象与轴交点的纵坐标的最大值是A.B.2C.D.解:由已知条件可知,,函数图象与轴交点的纵坐标为。令,则。因此选A。例17已知,直线与的交点在直线上,则。解:由已知可知,可设两直线的交点为,且为方程,的两个根,即为方程的两个根。因此,即0。1、=。2、已知函数,则f(x)的最小值为_____。3、已知,且。则的值是___.4、设函数f(x)=3sinx+2cosx+1。若实数a、b、c使得af(x)+bf(x−c)=1对任意实数x恒成立,则=5、设0<<π,求sin的最大值。6、求证:7、已知a0=1,an=(n∈N+),求证:an>.8、已知9、若A,B,C为△ABC三个内角,试求sinA+sinB+sinC的最大值。10、证明:11、已知α,β为锐角,且x·(α+β-)>0,求证:12、求证:①②sin1°sin2°sin3°…sin89°=全国高中数学竞赛专题-三角恒等式与三角不等式实战演练答案1、解:根据题意要求,,。于是有。因此。因此答案为1。2、解:实际上,设,则g(x)≥0,g(x)在上是增函数,在上是减函数,且y=g(x)的图像关于直线对称,则对任意,存在,使g(x2)=g(x1)。于是,而f(x)在上是减函数,所以,即f(x)在上的最小值是。3、解:4、解:令c=π,则对任意的x∈R,都有f(x)+f(x−c)=2,于是取,c=π,则对任意的x∈R,af(x)+bf(x−c)=1,由此得。一般地,由题设可得,,其中且,于是af(x)+bf(x−c)=1可化为,即,所以。由已知条件,上式对任意x∈R恒成立,故必有,若b=0,则由(1)知a=0,显然不满足(3)式,故b≠0。所以,由(2)知sinc=0,故c=2kπ+π或c=2kπ(k∈Z)。当c=2kπ时,cosc=1,则(1)、(3)两式矛盾。故c=2kπ+π(k∈Z),cosc=−1。由(1)、(3)知,所以。5、【解】因为0<<π,所以,所以sin>0,cos>0.所以sin(1+cos)=2sin·cos2=≤=当且仅当2sin2=cos2,即tan=,=2arctan时,sin(1+cos)取得最大值。6、思路分析:等式左边同时出现、,联想到公式.证明: 评述:本题方法具有一定的普遍性.仿此可证等.7、【证明】由题设知an>0,令an=tanan,an∈,则an=因为,an∈,所以an=,所以an=又因为a0=tana1=1,所以a0=,所以·。又因为当0<x<时,tanx>x,所以注:换元法的关键是保持换元前后变量取值范围的一致性。另外当x∈时,有tanx>x>sinx,这是个熟知的结论,暂时不证明,学完导数后,证明是很容易的。8、分析:条件涉及到角、,而结论涉及到角,.故可利用消除条件与结论间角的差异,当然亦可从式中的“A”入手.证法1:证法2:9、【解】因为sinA+sinB=2sincos,①sinC+sin,②又因为,③由①,②,③得sinA+sinB+sinC+sin≤4sin,所以sinA+sinB+sinC≤3sin=,当A=B=C=时,(sinA+sinB+sinC)max=.注:三角函数的有界性、|sinx|≤1、|cosx|≤1、和差化积与积化和差公式、均值不等式、柯西不等式、函数的单调性等是解三角最值的常用手段。10、证明: 所以,评述:①类似地,有 ②利用上述公式可快速证明下列各式: 11、【证明】若α+β>,则x>0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云南省梁河县2025年上半年事业单位公开遴选试题含答案分析
- 云南省澄江县2025年上半年事业单位公开遴选试题含答案分析
- 七年级下册英语人教版第四单元
- 2025年房屋购买税费筹划与法律服务合同
- 2025房地产抵押贷款评估与风险评估委托协议模板
- 2025版事业单位网络管理员岗位续聘合同
- 2025版数字图书授权销售合同范本细则
- 2025版碎石产品绿色环保认证合同范本
- 2025年度池塘水产养殖技术培训及推广合同
- 2025东莞离婚协议书范本:离婚后共同财产分割与保险理赔合同
- 数学家华罗庚课件
- 中考代词-(人称代词、物主代词、指示代词、反身代词、不定代词教学)课件26张
- 《人工智能基础》课件-AI的前世今生:她从哪里来
- 施工现场安全技术交底全集
- 完整版宪法知识竞赛试题完整题库及答案(夺冠系列)
- 云南大学附属中学数学2023-2024学年七年级上学期开学分班考试数学试题
- 小学武术校本课程教材(中学也可用)
- 自来水厂处理工艺流程图
- 物流管理就业能力展示
- 宿管老师培训课件
- 全媒体运营师-国家职业标准(2023年版)
评论
0/150
提交评论