组合高中三年级教案_第1页
组合高中三年级教案_第2页
组合高中三年级教案_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

组合高中三年级教案概要:教学目的使学生正确理解组合的意义,正确区分排列、组合问题;使学生掌握组合数的计算公式、组合数的性质用组合数与排列数之间的关系;通过学习组合知识,让学生掌握类比的学习方法,并进步学生分析问题和解决问题的才能;通过对排列、组合问题求解与剖析,培养学生学习兴趣和思维深入性,学生具有严谨的学习态度。教学建议一、知识构造二、重点难点分析本小节的重点是组合的定义、组合数及组合数的公式,组合数的性质。难点是解组合的应用题。打破重点、难点的关键是对加法原理与乘法原理的掌握和应用,并将这两个原理的根本思想贯穿在解决组合应用题当中。组合与组合数,也有上面类似的关系。从n个不同元素中任取m个元素并成一组,叫做从n个不同元素中任取m个元素的一个组合。所有这些不同的组合的个数叫做组合数。从集合的角度看,从n个元素的有限集中取出m个组成的一个集合,相当于一个组合,而这种集合的个数,就是相应的组合数。解排列组合应用题时主要应抓住是排列问题还是组合问题,其次要搞清需要分类,还是需要...

组合高中三年级教案,

教学目的

使学生正确理解组合的意义,正确区分排列、组合问题;

使学生掌握组合数的计算公式、组合数的性质用组合数与排列数之间的关系;

通过学习组合知识,让学生掌握类比的学习方法,并进步学生分析问题和解决问题的才能;

通过对排列、组合问题求解与剖析,培养学生学习兴趣和思维深入性,学生具有严谨的学习态度。

教学建议

一、知识构造

二、重点难点分析

本小节的重点是组合的定义、组合数及组合数的公式,组合数的性质。难点是解组合的应用题。打破重点、难点的关键是对加法原理与乘法原理的掌握和应用,并将这两个原理的根本思想贯穿在解决组合应用题当中。

组合与组合数,也有上面类似的关系。从n个不同元素中任取m个元素并成一组,叫做从n个不同元素中任取m个元素的一个组合。所有这些不同的组合的个数叫做组合数。从集合的角度看,从n个元素的有限集中取出m个组成的一个集合,相当于一个组合,而这种集合的个数,就是相应的组合数。

解排列组合应用题时主要应抓住是排列问题还是组合问题,其次要搞清需要分类,还是需要分步.切记:排组分清,加乘明确.

三、教法设计

1.对于根底较好的学生,建议把排列与组合的概念进展比照的进展学习,这样有利于搞请这两组概念的区别与联络.

2.学生与老师可以合编一些排列组合问题,如“45人中选出5人当班干部有多少种选法?〞与“45人中选出5人分别担任班长、副班长、体委、学委、生委有多少种选法?〞这是两个相近问题,同学们会根据自己身边的实际可以编出各种各样的具有特色的问题,老师要引导学生识别哪个是排列问题,哪个是组合问题.这样既调动了学生学习的积极性,又在编题辨题中澄清了概念.

为了理解排列与组合的概念,建议大家学会画排列与组合的树图.如,从a,b,c,d4个元素中取出3个元素的排列树图与组合树图分别为:

排列树图

由排列树图得到,从a,b,c,d取出3个元素的所有排列有24个,它们分别是:abc,abd,acb.abd,adc,adb,bac,bad,bca,bcd,bda,bdc.……dca,dcb.

组合树图

由组合树图可得,从a,b,c,d中取出3个元素的组合有4个,它们是(abc),(abd),(acd),(bcd).

从以上两组树图清楚的告诉我们,排列树图是对称的,组合图式不是对称的,之所以排列树图具有对称性,是因为对于a,b,c,d四个字母哪一个都有在第一位的时机,哪一个都有在第二位的时机,哪一个都有在第三位的时机,而组合只考虑字母不考虑顺序,为实现无顺序的要求,我们可以限定a,b,c,d的顺序是从前至后,固定了死顺序等于无顺序,这样组合就有了自己的树图.

学会画组合树图,不仅有利于理解排列与组合的概念,还有助于推导组合数的计算公式.

3.排列组合的应用问题,老师应从简单问题问题入手,逐步到有一个附加条件的单纯排列问题或组合问题,最后在设及排列与组合的综合问题.

对于每一道题目,老师必须先让学生独立考虑,在进展全班讨论,对于学生的每一种解法,老师要先让学生判断正误,在给予点播.对于排列、组合应用问题的解决我们提倡一题多解,这样有利于培养学生的分析问题解决问题的才能,在学生的多种解法根底上老师要引导学生选择最正确方案,总结解题规律.对于学生解题中的常见错误,老师一定要讲明道理,认真分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论