




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
优选参考资料优选参考资料第一章行列式为何要学习《线性代数》?学习《线性代数》的重要性和意义。答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展,它的理论和方法在各个学科中得到了广泛的应用。答:初等代数。3答:高等代数,线性规划,运筹学,经济学等。4.如何学习《线性代数》?答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的概念要着重加深理解及区分它们之间的差异。第一章行列式5.什么是一个n答:由n1,2,…n成的一个有序数组。6阶全排列。答:按数字由小到大的自然顺序排列的n阶排列123…n。什么是n阶全排列的逆序。答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3,数4与1,数4与2,数5与3,数5与1,数5与2,数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。什么是n阶排列的逆序数。答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312的逆序数为8。什么是奇排列和偶排列?【知识点】:排列的奇偶性。答:逆序数为奇数的排列叫奇排列;逆序数为偶数的排列叫偶排列。例如:排列45312为偶排列。的对换对排列的奇偶性的影响。答:对换一个排列中的任意两个数,奇排列就变成偶排列,偶排列就变成奇排列。例45312对换4与3354127,排列35412列。任一个n阶排列与标准排列可以互变吗?【知识点】:n系。答:可经过一系列对换互变。且所做对换的次数与排列具有相同的奇偶性。例如:排列32541的逆序数是6,因而是偶排列,它经过2次对换:3与1对换后变为12543,再对换5与31234526与逆序数一般不相等。12.n阶行列式中的元素的两个下标表示什么?【知识点】:n阶行列式的元素。答:第一个下标表示元素所在的行数,第二个下标表示元素所在的列数。例如:a23表示该元素位于行列式的第2行第3列的位置。13.n阶行列式展开式中共有多少项?每一项有什么特点?【知识点】:n阶行列式的定义。答:共有n!项,每一项由不同行不同列的n个元素的乘积构成。例如:3阶行列式共有3!=6项,每一项由不同行不同列的3个元素的乘积构成。14.n阶行列式的定义。答:当n个元素的乘积的第一个下标按标准排列排列时,该项的符号为(-1)阶行列式中的项aaaa(-1τ(432)+1.14 23 32 4115.1阶行列式等于多少?【知识点】:1阶行列式的特点。答:1阶行列式|a|=a。但不要与绝对值混淆。16.2,3阶行列式的对角线算法怎样进行?【知识点】:2,3阶行列式的的定义及特殊性。答:从左上角到右下角的元素的乘积的项前取正号,从右上角到左下角的元素的乘积的项前取负号。对角线算法能用于4性。答:不能,因为按对角线算法展开阶行列式只有2n项,而阶行列式的展开式中应有n!项,另外各项前的符号也不能用对角线算法的方法来定。例如:4阶行列式中的项aaaa的符号应为+,按对角线算法的方法它的符号为“-”。14 23 32 41上(下)三角行列式怎样计算?三角行列式的算法。答:主对角线上的所有元素的乘积。例如:点】:行列式的的对称性。答:依次将行列式的行写成列后得到的行列式叫转置行列式。转置行列式与原行列式相等。这说明行列式的行与列的对称性。例如:行列式 的转置行列式 。它们是相等的。交换行列式的任意两行(列),性质。答:行列式要变号。例如:用一个数k性质。答:相当于在行列式的某行(或列)的每个元素上都乘以数k。例如:,则如果行列式中有两行(列)的基本性质。答:行列式等于0。例如:行列式中某一行(列)识点】:行列式的基本性质。答:可以。例如:若行列式中有某一行(列)列式的基本性质。答:应用23问的答,得行列式等于0。若行列式中有两行(列)列式的基本性质。答:应用22问与23问的答,得行列式等于0。将一个行列式拆成两个行列式的和时应注意什么问题?【知识点】:行列式拆成两个行列式的和。答:只能将某行(或列)的元素拆开,而其它行(或列)的元素不变。例如:把行列式的某一行(列)元素乘以同一数k什么变化?【知识点】:行列式的基本性质。答:行列式不变。例如: 的第2行乘3加到第1行后的行列式与原行列式相等。行列式的k阶子式是什么含义?【知识点】:行列式的k阶子式。kkkk阶行列式。例如:的由第1、3行与第2、3列得到的一个2阶子式为式的余子式是什么含义?【知识点】:行列式的子式的余子式。答:把子式所在的行和列去掉后剩下的元素构成的行列式。例如:的由第1、3行与第2、3列得到的子式的余子式为划去第1、3行与第2、3列剩下的行列式。答:子式的代数余子式是在子式的余子式前添上符号,其中 为子式所在的行和列。例如:D
的子式 的代数余子式是a的余子式和代数余子式是什么含义?【知识点】:行列式的元ij素的余子式和代数余子式的概念。答:元素式。元素
aaij列后剩下的元素所构成的行列ij ija的代数余子式是在元素a的余子式前添上符号 后的式子。例如:ij ij的元素a=7的余子式是去掉元素所23在的2行和列后剩下的元素所构成的行列式 ,a=7的代数余子23式是 。32.n阶行列式的任一个k有什么关系?【知识点】:子式与它的代数余子式的乘积与行列式中的项的关系。答:n阶行列式的任一个k一项,而且符号一致。行列式按k行展开如何展开?【知识点】:行列式展开的拉普拉斯定理。答:在行列式中任取k行,由这k行元素组成的所有的k的乘积之和等于行列式。行列式按一行(列)展开如何展开?【知识点】:行列式按一行(列)式。答:行列式等于它的任意一行(列)的所有元素与它们的代数余子式的乘积之和。行列式的某一行(列)的所有元素与另一行(列)积之和等于多少?【知识点】:行列式的重要性质。答:等于0。范德蒙行列式有什么特点?怎么计算?【知识点】:范德蒙行列式。答:范德蒙行列式第一行全为1,第三行以后依次是第二行的元素2,3,…,n-1次幂.范德蒙行列式等于第二行的后一列元素与前各列元素的所有差的乘积。即克拉默法则能解决什么样的线性方程组的问题?【知识点】:克拉默法则。答:方程的个数与未知量的个数相等的线性方程组,且方程组的系数行列式要求不为零。克拉默法则中,方程组的解的公式是怎样计算的?【知识点】:克拉默法则。答:第i个未知量的解等于D/D,其中D是系数行列式D中的第i列换成自由项所得i i到的行列式。行列式的计算有哪些常用的方法?【知识点】:行列式的计算方法。答:利用行列式的性质将行列式化为上(或下)三角行列式;利用行列式的性质将行列式的某一行(或列)变成只有一个元素非零,再按该行(或列)展开,依照此法做下去,直到2或3阶行列式;根据行列式的形状找出递推关系,由递推关系来计算出行列式。第二章矩阵1答:矩阵是一个由数排成的数表,不是数。2.有哪些矩阵表示法?【知识点】:矩阵表示法。答:用大写的英文字母A,B,…,或Am×n,(aij)m×n,(aij)。3答:矩阵的型相同,对应的元素相等。4.矩阵在什么情况下叫方阵?【知识点】:方阵的概念。答:矩阵的行数与列数相等。5.1阶方阵是什么?【知识点】:1阶方阵。答:1行1列的矩阵。上三角矩阵有什么特点?【知识点】:上三角矩阵。答:上三角矩阵是方阵,且主对角线以下的元素都为0的方阵。例如:是上三角矩阵。下三角矩阵有什么特点?【知识点】:下三角矩阵。答:下三角矩阵是方阵,且主对角线以上的元素都为0的方阵。例如:是下三角矩阵。对角矩阵有什么特点?【知识点】:对角矩阵。答:对角矩阵是方阵,且主对角线以外的元素都为0的方阵。例如: 是阶对角矩阵。9.n1的对角矩阵。10.不同阶的单位矩阵是否相等?【知识点】:单位矩阵。答:因为两个矩阵相等首先要求它们是同阶的,所以不同阶的单位矩阵不相等。的矩阵,它不一定是方阵。12.不同型的零矩阵是否相等?【知识点】:零矩阵。答:因为两个矩阵相等首先要求它们是同阶的,所以不同阶的零矩阵不相等。两个矩阵相加有什么条件?【知识点】:矩阵的加法。答:两个矩阵的型要相同。比如要与2×3矩阵相加的矩阵一定是2×3矩阵。两个矩阵如何相加?【知识点】:矩阵的加法。答:对应位置上的元素相加。例如:= 。负矩阵是什么含义?【知识点】:负矩阵。答:矩阵的每个元素都添上负号后得到的矩阵为原矩阵的负矩阵。例如:= 。两个矩阵如何相减?【知识点】:矩阵的减法。答:A-B为A加上B的负矩阵。例如: =+= + = 。A+B=B+AA+B)+C=A+(B+C)。k
)是如何相乘的?【知识点】:矩阵与数的乘法。ijkA为A的每个元素aij
都乘数k,即(ka
。例如:ij= 。两个矩阵的乘法有什么条件?【知识点】:矩阵的乘法。=第二个矩阵的行数,即如果矩阵A的列数是nAB。矩阵A=(a
与矩阵B=(b)
相乘,所得矩阵
)的元素c
是怎样得来ijm×s
ijs×n
ij ij的?【知识点】:矩阵的乘法。cij
A=(aij
i
)ij
的第j列的对应元素相cij
b+ai1 1j i2
+…+2j
b。例如: × 的第is sj1行第2列的元素
c=第1个矩阵的第1行的元素与第2个矩阵的第2列的相应元素的乘积12=3×(-2)+(-2)×4+7×3=7。21答:没有。AB=0A=0B=0吗?【知识点】:矩阵的乘法的运算规律。答:不能。例如但AB=0。AB=AC,A≠0,B=C吗?【知识点】:矩阵的乘法的运算规律。答:不能。例如:有AB=AC,A≠0,但B≠C。(AB)C=A(BC)。25答:有,即A(B+C)=AB+AC(B+CA=BA+CA。26Em×n矩阵,EA=AE识点】:矩阵的乘法的应用。答:m阶,根据矩阵乘法的条件,E的行数=A的列数=m,而E是方阵。27.n阶方阵有幂运算,即Ak=【知识点】:矩阵的幂运算。
,矩阵的幂运算与数的幂运算有什么不同?nA,B(AB)k≠AkBk,这与数的幂运算不同。Am次多项式是怎样表示的?【知识点】:方阵的多项式。答:a
E+a0
A+…+1
Am,其中E是单位矩阵。mA的转置是怎样进行的?【知识点】:矩阵的转置。答:依次将矩阵A的行(列)变成列(行)。例如: 的转置为。矩阵A 转置后成为什么型矩阵?【知识点】:矩阵的转置。m×n答:n×m型矩阵,因为转置后的矩阵的行数=原矩阵的列数,转置后的矩阵的列数=原矩阵的行数。AA答:相等,即。32.(A+B)T与AT,BT的关系如何?【知识点】:矩阵的转置的性质。答:(A+B)T=AT+BT。33.(kA)T与AT的关系如何?【知识点】:矩阵的转置的性质。答:(kA)T=kAT。34.(AB)TAT,BT答:(AB)T=BTAT。AAAT=A。对称矩阵的乘积矩阵是否为对称矩阵?【知识点】:对称矩阵。答 : 不 一 定 。 例 如 : 则 有不是对称矩阵。反对称矩阵有什么特点?【知识点】:反对称矩阵。0a=-aAT=-A。ij ji什么矩阵可以取行列式?【知识点】:矩阵与行列式的某种联系。答:因为行列式的行数与列数要相同,所以只有方阵可以取行列式。kA等于什么?【知识点】:数乘矩阵的行列式。答:因为数乘矩阵的每个元素是原矩阵的相应元素的倍数k,所以|kA|=kn|A|,n为矩阵A的阶数。
k倍,即数乘矩阵的每行都有相同的
A,BABA,B的行列式|A|,|B|有什么关系?【知识点】:矩阵与行列式的联系。答:|AB|=|A||B|。矩阵可逆的定义是怎样的?【知识点】:可逆矩阵。nAnBAB=BA=EA可逆矩阵。答:是唯一。质。答:可逆矩阵的逆矩阵是可逆。逆矩阵A-1的逆矩阵是A。44.同阶可逆矩阵的乘积是否可逆?【知识点】:逆矩阵的性质。答:同阶可逆矩阵的乘积是可逆的。
A,B的乘积ABA-1,B-1有什么关系?【知识点】:逆矩阵的性质。答:A-=-A-。答:可逆矩阵的转置矩阵是可逆的。AATA答:-1=1。kAkA是否可逆?【知识点】:逆矩阵的性质。答:非零数k与可逆矩阵A的乘积kA是可逆的,且k)-=1-1。答:任何一个方阵都有伴随矩阵。
)的伴随矩阵A*是怎样描述的?【知识点】:伴随矩阵。ij
)ij
)aij
的代数余子式A构ij成的方阵,第
i
i列,1,2,…,.
。A之间有什么关系?【知识点】:方阵与它的伴随矩阵的关系。答:AA*=A*A=|A|E。
A可逆的条件用它的行列式|A|怎样描述?【知识点】:方阵可逆的判别条件。答:方阵A可逆的充要条件是|A|≠0。
A有什么联系?【知识点】:可逆矩阵与它的伴随矩阵的关系。答:可逆矩阵A的逆矩阵-1=|A-A。54答:在矩阵A的行、列之间加上一些横线或纵线,把A构成的矩阵叫分块矩阵。运算。答:相加的矩阵的分法要相同。运算。答:前一个矩阵的列的分法与后一个矩阵的行的分法要一致。分块矩阵的转置怎样进行?【知识点】:分块矩阵的运算。答:先将分块矩阵的行(列)变成列(行),然后每个子块作转置。矩阵的初等行(列)变换有哪几种?【知识点】:矩阵的初等变换。答:矩阵的初等行(列)变换有:(1)对换矩阵的任意两行(列);(2)用一个非零数乘矩阵的某一行(列);(3)用数
k乘矩阵的某一行(列)后加到另一行(列)上。什么是初等矩阵?有几种?【知识点】:初等矩阵。答:初等矩阵是单位矩阵经过一次初等变换所得到的矩阵。初等矩阵有三种。在矩阵的左(右)点】:初等变换与初等矩阵的关系。答:在矩阵的左(右)边乘上一个初等矩阵相当于对矩阵作一次相应的初等行(列)变换。两个矩阵等价是什么含义?【知识点】:等价矩阵。答:反身性,对称性,传递性。答:矩阵与它的标准形等价。如何利用矩阵的初等变换求矩阵的逆?【知识点】:求矩阵的逆的初等变换法。答:将矩阵A与同阶的单位矩阵E(A┆E),对新矩阵进行一系列的初等行变换,将矩阵A(E┆B)方变化来的矩阵B就是矩阵A的逆。求矩阵的逆有什么方法?各有什么优点?【知识点】:求矩阵的逆的方法。答:(1)利用伴随矩阵;(2)利用初等变换。当矩阵的阶为2,3时,用伴随矩阵较方便,当矩阵的阶大于3时,用初等变换较方便。
)的k阶子式是什么含义?【知识点】:矩阵的子式。ijkk列,位于这些行列交叉处的元素按原来相对位置所构成的kk阶子式。AA中不为零的子式的最高阶数为矩阵的秩。A=(aij
的秩的范围是什么?【知识点】:矩阵的秩。答:大于等于0,小于等于min(m,n)。AAT答:相等。70.n阶可逆矩阵A的秩等于多少?【知识点】:可逆矩阵的秩。答:等于n。的矩阵是零矩阵。答:初等变换不改变矩阵的秩。AP,QA的秩?【知识点】:矩阵的秩的性质。答:在矩阵A的左右乘上可逆矩阵P,Q不改变矩阵A的秩。利用矩阵的初等变换如何求矩阵的秩?【知识点】:求矩阵的秩的初等变换法。答:将矩阵化为阶梯形矩阵,阶梯形矩阵的非零行的行数就是矩阵的秩第三章向量空间1.什么是n维向量?【知识点】:n维向量。答:由n个数组成的一个有序数组,比如(1,2,3,-2,0)是一个5维向量。2.分量相同的行向量和列向量是否表示同一个向量?【知识点】:n维向量。答:同一个。两个向量相等是什么含义?【知识点】:向量相等。答:维数相同,对应的分量相等,即α=(a,a,…,a)=β=(b,b
,…,b)的充要条件是对1 2 ni i=1,2,…,n,a=i
1 2 n一个向量的负向量的意义是什么?【知识点】:负向量。答:一个向量α=(a,a,…,a)的负向量是-α=(-a,-a,…,-a)。1 2 n 1 2 n.答:对应的分量分别相加,即α=(a
,a,…,a
),β=(b
,b,…,b
,α+=(a
,a,…,a)+1 2 n
1 2
1 2 n,2n(1bb,…,b,2n(1
)=
+b,1 1,
+b,…,a
+ 。,22 bn1kα=(a,22 bn1
,…,a
n)是如何相乘的?【知识点】:向量的数乘.,21α=(a,21
,…,a
)
,1
,…,ka)。2 nn.n答:加法与数乘。.答:共有8条:(1)α+β=β+α;(2)结合律(α+β)+γ=α+(β+γ);(3)α+0=α:(4)α+(-α)=0;(5)(k+l)α=kα+lα;(6)k(α+β)=kα+kβ;(7)(kl)α=k(lα)=l(kα);(8)1·α=α。9.n维向量空间的含义是什么?【知识点】:向量空间.答:在n维向量组成的集合中定义了加法和数乘运算,这些运算满足上面的8条运算规律,这样的集合就是n维向量空间。2 s 1 2 10βα1,α,…,αα,α,…,α2 s 1 2 2答:指存在数k1,k2
,…,k
使得β=kα
+kα
+…+kα
ss成立。sss112211.n维向量空间中的单位向量组指的是什么?【知识点】:单位向量组.s1122答:n 维向量空间中的单位向量组指的是:(1,0,…,0),(0,1,…,0),…,(0,0,…,1)。α1,α2,…,αs.答:向量组α1,α2,…,αs线性相关是指:存在不全为零的数k1,k2,…,ks使得成立。kα+kα+…+kα=0成立。1 1 2 2 s s1 2 α,α,…,α1 2 1 2 s 1 1 2 2 s α,α,…,αkα+kα+…+kα=1 2 s 1 1 2 2 s 2k=k21
=…=k
=0。s.s答:一个向量组是要么线性相关要么线性无关,二者必居其一。1如何讨论向量组1
,α,…,α2
的线性相关性?【知识点】:向量组的线性相关性.2 s 1 2 1 1 2 2 s 1 2 s 1 1 2 2 s s 1 2 kα+kα+…+kα=0出发,根据条件如果得到有不全为零的数k,k,…,kkα+kα+…+kα=0α,α,…,α如果得到k1,k,…,k0α2 s 1 2 1 1 2 2 s 1 2 s 1 1 2 2 s s 1 2 16.n维向量空间中的单位向量组是否线性无关?【知识点】:单位向量组的线性相关性.答:n维向量空间中的单位向量组是线性无关的。.答:当向量组只含有一个向量时,则向量非零时为线性无关,向量为零向量时线性相关。.2 s 1 2 答:一定线性相关,设α1,α,…,α的某个部分组α,α,…,2 s 1 2 2 α1,α,…,α2 .答:不一定线性相关。例如α1=(1,0,0),α2=(0,1,0),α3=(0,0,1),α4=(1,1,1)线性相关,但部分组α1=(1,0,0),α2=(0,1,0),α3=(0,0,1)线性无关。.1 2 1 2
α,α,…,α线性无关,则它的任何一个部分组一定线性无若一个向量组的某一部分组线性无关,那么该向量组是否一定线性无关?【知识点】:向量组的部分组与整组的关系.答:不一定线性无关,例如
α=(1,0,0),α=(0,1,0),α=(0,0,1),α=(1,1,1)的部分组1 2 3 3 α1=(1,0,0), α2=(0,1,0), α=(0,0,1)线性无关,但α1=(1,0,0), α2=(0,1,0), α1 2 3 3 α4=(1,1,1)线性相关。.1 2 s 1 2 答:线性相关。设α=0,α,…,α,由于存在不全为0的数k=1,k1 2 s 1 2 得kα+kα+…+kα=0,α=0,α
线性相关。1 1 2 2 s s 1 2 s1向量组1
,α,…,α2
中至少有一个向量可由其余s-1个向量线性表示是不是向量1 2 α,α,…,α1 2 答:是。
,α,…,α
α
,…,α
,β线性相关,那么向1 2 s 1 2 s1β1
,α,…,α2
唯一地表示?【知识点】:一个向量由向量组的线性表示.1 2 答:是。由于向量组α,α,…,α,β线性相关,所以存在不全为01 2 如果=0,使得k,k,…,k,k, kα+kα+…+kα+kβ=0。 如果=0,使得1 2 s 1 1 2 2 s s 1 1kα+…+kα=0,由于向量组α,α,…,α
线性无关,则必有s12s12s2 2 s s 1 2 ss12s12s2k=k21
=…=k
=0,
,α,…,α
α
,…,α
线性无关矛盾。所以k≠0,故β=- (k1α1+k2α2+…+ksαs),即β可由向量组表示,唯一性可由向量组α1,α2,…,αs线性无关得到。一个pr,向量组的线性相关性。答:该向量组仍然线性无关。26答:它们可以互相线性表示。等价的向量组所含的向量个数是否相同?【知识点】:向量组等价的性质。答:如果等价的两个向量组价的都是线性无关,则它们所含的向量个数相同。如果等价的两个向量组中有线性相关的向量组,则它们所含的向量个数不一定相同。向量组的极大无关组有什么含义?【知识点】:向量组的极大无关组。答:向量组的极大无关组是向量组的一个线性无关的部分组,且向量组的任何一个向量都可以由该部分组线性表示。1 2 向量组α,α,…,α1 2 1答:向量组1
,α,…,α2
的秩指的是它的极大无关组所含的向量的个数。1如果向量组1
,α,…,α2
线性相关,那么以α
,α,…,α2
为行构成的矩阵的秩与1s的关系如何?【知识点】:向量组与其对应矩阵的关系.1
α,α1
,…,αs
的秩与以α
,α,…,α2
为行构成的矩阵的秩相等,而向量组
α,α1
,…,αs
线性相关,那么向量组α
,α,…,α12 1
的秩小于
s,所以以11 2 α,α,…,α为行构成的矩阵的秩小于s11 2 ,向量组的线性相关性。mn维(n<m)mn矩阵n,mnnm向量组一定线性相关。1一个向量组1
,α,…,α2
可由另一个向量组β
,β,…,β2
线性表示,那么它们的1秩有什么关系?【知识点】:向量组的秩。1答:r{α,α,…,α}≤r{βββ}。1 2 s 1 2 t,向量组等价。答:向量组与它的极大无关组等价。36答:一般不唯一。37.同一个向量组的任意两个极大无关组是否等价?【知识点】:极大无关组,向量组等价。答:同一个向量组的任意两个极大无关组等价,因为它们可以互相线性表示。38.向量组的极大无关组所含向量的个数否唯一?【知识点】:极大无关组。答:向量组的极大无关组所含向量的个数是唯一的。的秩,向量组等价。答:秩相同的向量组不一定等价。因为秩相同的向量组的向量的维数可以不同,而向量的维数不同的向量组是不可能等价的。答:由矩阵的行(列)向量组成的向量组的秩为矩阵的行(列)秩。答:矩阵的行秩、列秩和秩相等。42.向量空间的基指的是什么?【知识点】:向量空间的基。答:向量空间中的所有向量组成的向量组的一个有序的极大线性无关组。答:向量空间的基所含向量的个数。坐标。答:向量的坐标是向量表示为基的线性组合时的基向量前的系数。标。答:同一个向量在不同基下的坐标是不同的。例如:向量(1,1)在基(1,0),(0,1)下的坐标为(1,1)而在基(1,0),(0,2)下的坐标是(1,1/2)。两个向量之间的内积是怎样定义的?【知识点】:向量的内积。答:两个向量之间的内积是对应坐标的乘积之和,即设α=(a,a,…,a),,1β=(b,1
2,…,b2
n1)α,βan1
b+a1
b+ +ab…。2 n n…。
1 2 n答:定义了向量的内积的向量空间。答:两个向量正交是指内积为零的两个向量。答:向量两两正交的向量组。50.什么是单位向量?【知识点】:向量的长度。1的向量。答:标准正交向量组是每个向量为单位向量的正交向量组。答:正交向量组线性无关。组,线性无关。54答:不能从一个线性相关的向量组进行施密特正交化。55.一个矩阵成为正交矩阵有什么条件?【知识点】:正交矩阵。答:矩阵的行(或列)向量组是标准正交向量组。56。答:正交矩阵的乘积是正交矩阵。答:正交矩阵是可逆。它的逆是正交矩阵。第四章线性方程组
AX=b的增广矩阵指的是什么?【知识点】:线性方程组的增广矩阵。答:线性方程组的增广矩阵由系数矩阵和常数项组成的矩阵,即B=(A,b)。bb=0。答:常数项b不都为零的线性方程组,即b≠。
AX=b有解的充要条件是什么?【知识点】:非齐次线性方程组有解的充要条件。答:系数矩阵的秩=增广矩阵的秩,即r(A)=r(B)。方程组的初等变换有哪几种?【知识点】:方程组的初等变换。答:有3种:(1)互换方程组中某两个方程的位置;(2)程;(3)将某一个方程的k倍加到另一个方程上。
AX=b有唯一解的条件是什么?【知识点】:非齐次线性方程组有唯一解的条件。答:系数矩阵的秩r(A)=增广矩阵的秩r(B)=方程的自变量的个数。
AX=b有无穷多解的条件是什么?【知识点】:非齐次线性方程组有无穷多解的条件。答:系数矩阵的秩r(A)=增广矩阵的秩r(B)<方程的自变量的个数。AX=bB=(A,b)点】:方程组的初等变换,矩阵的初等变换。答:对方程组进行初等变换相当于对增广矩阵B=(A,b)作初等行变换。AX=b有解的条件?【知识点】:方程组有解的条件。答:对增广矩阵B=(A,b)作初等行变换,将增广矩阵化为阶梯形矩阵,判断系数矩阵A的秩是否等于增广矩阵B的秩。齐次线性方程组AX=0AX=0一定有解。的解。答:非零解。
AX=0主要关心的是什么样的解?【知识点】:齐次线性方程组2 1 AX=0的任何两个解X1,X的和X+X2 1 方程组的解?【知识点】:齐次线性方程组的解的性质。1 2 1 答:因为X,X是齐次线性方程组AX=0的两个解,于是AX=0,AX1 2 1 A(X+X
)=
+
=0+0=0
+XAX=0的解。1 2 1 2 1 2AX=0XkkX次线性方程组的解?【知识点】:齐次线性方程组的解的性质。XAX=0A(kX)=kAX=k0=0kX是AX=0的解。
AX=0的基础解系η,η,…,η要满足什么条件?【知识1 2 1 2 1 2 r 12 r 1 2 答:齐次线性方程组的基础解系η,ηη是解空间的一组基,即(1)ηη,…,ηAX=0的解向量;(2)η,η,…,1 2 r 12 r 1 2
AX=0什么时候没有基础解系?【知识点】:齐次线性方程组的基础解系。答:当系数矩阵的秩=方程组的自变量的个数时,齐次线性方程组
AX=0没有基础解系。
AX=0的基础解系是否唯一?【知识点】:齐次线性方程组的基础解系。答:因为与一个基础解系等价的线性无关的向量组都是同一个齐次线性方程组的基础解系,所以基础解系不唯一。
AX=0的基础解系所含向量的个数是否唯一?等于多少?【知识点】:齐次线性方程组的基础解系。答:齐次线性方程组AX=0的基础解系所含向量的个数是唯一的,它等于方程的自变量的个数n减系数矩阵的秩r,即n-r。础解系的确定。
AX=0的基础解系?【知识点】:齐次线性方程组的基答:将系数矩阵A进行初等行变换,化为阶梯形矩阵,得到与原方程组等价的方程组,确定自由未知量,依次取一个自由未知量为1,其它取为0,代入等价的方程组解方程组,就得n-r个解向量,它们就是齐次线性方程组的基础解系。AX=0的通解怎么表示?【知识点】:齐次线性方程组的通解。1 AX=0AX=0η,η1 rη的线性组合表示。r1 2 1 AX=bXX+X1 2 1 1 2 1 2 1 答:不是,因为AX=,AX=b,所以A(X+X)=AX+AX=b+b=1 2 1 2 1 1 X+XAX=b1 的导出组。AX=0。
AX=b的导出组指的是什么?【知识点】:非齐次线性方程组AX=bb0,系数不变而得的1 2 1 AX=b的任意两个解X的差X-X1 2 1 解?【知识点】:非齐次线性方程组的解的性质。1 2 1 AX=bXX-XAX=01 2 1 解。答:非齐次线性方程组解。解的求法。
AX=b的通解怎样表示?【知识点】:非齐次线性方程组的通AX=b的通解是非齐次线性方程组的一个特解+导出组的通AX=b的通解怎样得到?【知识点】:非齐次线性方程组的通答:将增广矩阵B=(A,b)化为阶梯形矩阵,得与原方程组等价的方程组,确定自由未知量,令自由未知量都为0代入等价的方程组中可得非齐次线性方程组的一个特解;在等价的方程组中将常数项变为0,求出导出组的基础解系。由问题23性方程组的通解第五章矩阵的相似对角形1.什么型的矩阵才有特征值和特征向量的概念?【知识点】:矩阵的特征值和特征向量。答:方阵才有特征值和特征向量的概念。2.nAλX和特征向量。答:n阶方阵A的特征值λ和特征向量X满足AX=λX,X≠0。AX=λXXA矩阵的特征向量。答:满足方程AX=λX的任何一个向量X未必是方阵A的特征向量,必须要求X≠0。方阵A|λE-A|=0。A的特征向量是如何求得的?【知识点】:矩阵的特征向量。Aλλ代入齐次方程组(λE-A)X=0Aλ的所有特征向量。属于同一个特征值λ特征向量?【知识点】:矩阵的特征向量。答:不是,只有非零的线性组合才是属于该特征值的特征向量。AAT|λE-A|=|λE-AT|AAT的特征值相同。AAT量。答:一般不是。
s个不同特征值的s个特征向量构成的向量组是否一定线性无关?【知识点】:矩阵的特征向量,线性无关。答:一定线性无关。
A的特征值和特征向量的步骤是怎样的?【知识点】:特征值和特征向量的求法。答:先求特征方程|λE-A|=0的解
λ,然后将特征值λ代入齐次方程组(λE-A)X=0,它的基础解系的任何非零线性组合就是属于Aλ的所有特征向量。矩阵A的特征值与矩阵的行列式|A|值,矩阵的行列式。答:|A|=矩阵A的所有特征值的乘积。AAA的主对角线上的元素之和。A=A的主对角线上的元素之和。13.两个同阶矩阵A,BC。相似矩阵A,B的行列式是否相等?由此可得什么结论?【知识点】:相似矩阵的行列式。答:相似矩阵A,B的行列式相等。可得:相似矩阵A,B同时可逆或同时不可逆。A,B是可逆的,那么它们的逆是否也相似?【知识点】:相似可逆矩阵的性质。答:两个可逆的矩阵A,B如果相似,那么它们的逆也相似。如果两个矩阵A,B相似,那么它们的数乘、幂是否也相似?【知识点】:相似矩阵的性质。答:如果两个矩阵A,B相似,那么它们的数乘、幂也相似。Af(A)算?【知识点】:矩阵的多项式矩阵的特征值。f(A)Af(A)的特征值。A,B点】:相似矩阵的特征多项式。答:如果两个矩阵A,B相似,那么它们的特征多项式、特征值相同。如果两个矩阵A,B识点】:矩阵的特征多项式,矩阵的相似。答:不一定。例如: 的特征值都2,但它们不相似。答:不相同。21.nA与对角矩阵相似(矩阵可对角化)矩阵可对角化的条件。答:矩阵A有n个线性无关的特征向量。如果矩阵A点】:矩阵对角化,特征值。答:如果矩阵
A与对角矩阵相似,那么对角矩阵的对角线上的元素是矩阵A的特征值。ABCCB有什么对应关系?【知识点】:矩阵相似。CA的特征(列)向量构成。可逆矩阵Cj列是属于对角矩阵B的第j个位置上的特征值的特征向量。24.nAn矩阵可对角化条件。答:n阶矩阵A有n个互不相同的特征值是矩阵可对角化的充分条件。25.实对称矩阵A是否一定可对角化?【知识点】:实对称矩阵,矩阵的对角化。答:实对称矩阵A一定可对角化。A的特征值都是实数吗?【知识点】:实对称矩阵的特征值。答:实对称矩阵A的特征值都是实数。非对称矩阵是否一定可对角化?【知识点】:矩阵的对角化。答:非对称矩阵不一定可对角化。例如阶矩阵 只有两个线性无关的特征向量,因此 不能对角化。的特征向量的性质。答:实对称矩阵的属于不同特征值的特征向量一定正交。阵与一般矩阵的特征向量的区别。答:任何一个矩阵的属于不同特征值的特征向量不一定正交。30答:实对称矩阵可用正交矩阵对角化。角化的区别。答:不行。AT角化的正交矩阵。答:先求出实对称矩阵A以单位的正交特征向量为列构成正交矩阵T就是所要的将实对称矩阵对角化的正交矩阵。第六章二次型1.n元二次型是如何定义的?【知识点】:二次型的概念。答:n元二次型是n个变量的二次齐次多项式,即 。二次型型的矩阵的表示。
的矩阵A的表示形式有什么要求?【知识点】:二次ij答:二次型的矩阵A是对称矩阵A=(a),那么二次型ij
就可以表示为XTAX其中X= x x x T(,1 2
n)。答:二次型与对称矩阵之间有一一对应的关系。二次型 的秩是怎样定义的?【知识点】:二次型的秩。答:二次的秩是二次型的矩阵A的秩。何为二次型和正规型的概念。
的标准型和正规型?【知识点】:二次型的标准型答:二次型 的标准型是只含有平方项的二次型。二次型的正规型是平方项的系数只能为1或-1的标准型。何为满秩线性变换、正交变换?【知识点】:满秩线性变换,正交变换。答:满秩线性变换是系数矩阵为可逆的线性变换。正交变换是系数矩阵为正交矩阵的线性变换。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025二手车买卖合同模板
- 江苏省张家港市梁丰初级中学2026届八年级数学第一学期期末考试模拟试题含解析
- 山东省临沂市12中学2026届七年级数学第一学期期末经典模拟试题含解析
- 中国银行大连市沙河口区2025秋招笔试管理营销专练及答案
- 云南省云南大学附属中学2026届九年级数学第一学期期末学业质量监测试题含解析
- 邮储银行柳州市三江侗族自治县2025秋招笔试英语完形填空题专练30题及答案
- 邮储银行双鸭山市尖山区2025秋招笔试英语阅读选词题专练30题及答案
- 2025财产抵押借款合同范本(含详细条款)
- 邮储银行黄山市黄山区2025秋招笔试计算机基础专练及答案
- 2025室内、外绿植租赁合同模板
- 2025年气象系统公务员录用考试面试真题模拟试卷(结构化小组)
- 风力发电项目审批流程及要点梳理
- 医院污水站维护方案(3篇)
- 视频监控考核管理办法
- StarterUnit3Wele!SectionB1a1e(教学设计)人教版七年级英语上册
- 快递安全收寄培训课件
- 抖音公会入股合同协议书
- 代加工协议合同范本
- 安全注射标准WST856-2025学习解读课件
- 风力发电机组基础工程施工方案
- 2025年GCP制度培训测试题(附答案)
评论
0/150
提交评论