




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1/1函数的总结知识点(精选6篇)
正比例函数的性质
定义域:R(实数集)
值域:R(实数集)
奇偶性:奇函数
单调性:
当>0时,图像位于第一、三象限,从左往右,y随x的增大而增大(单调递增),为增函数;
当k0时,开口方向向上,a0时,抛物线向上开口;当a0),对称轴在y轴左;
当a与b异号时(即ab0时,抛物线与x轴有2个交点。
δ=b^2-4ac=0时,抛物线与x轴有1个交点。
δ=b^2-4ac0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;
当h>0,k0时,开口向上,当a0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a0,图象与x轴交于两点a(x,0)和b(x,0),其中的.x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离ab=|x-x|
当△=0.图象与x轴只有一个交点;
当△0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a0(a0时,开口方向向上,a0时,抛物线向上开口;当a0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是-b/2a0),对称轴在y轴左;当a与b异号时(即ab0时,抛物线与x轴有2个交点。
Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
Δ=b^2-4ac0时,函数在x=-b/2a处取得最小值f(-b/2a)=4ac-b/4a;在{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2c(a≠0)
特殊值的形式
7.特殊值的形式
①当x=1时y=abc
②当x=-1时y=a-bc
③当x=2时y=4a2bc
④当x=-2时y=4a-2bc
二次函数的性质
8.定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,
正无穷);②[t,正无穷)
奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数。
周期性:无
解析式:
①y=ax^2bxc[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a0,图象与x轴交于两点:
([-b-√Δ]/2a,0)和([-b√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ0且X≧(X1X2)/2时,Y随X的增大而增大,当a>0且X≦(X1X2)/2时Y随X
的增大而减小
此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连
用)。
交点式是Y=A(X-X1)(X-X2)知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1X2值。
26.2用函数观点看一元二次方程
1.如果抛物线与x轴有公共点,公共点的横坐标是,那么当时,函数的值是0,因此就是方程的一个根。
2.二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。
26.3实际问题与二次函数
在日常生活、生产和科研中,求使材料最省、时间最少、效率最高等问题,有些可归结为求二次函数的最大值或最小值。
函数的总结知识点第5篇特别要注意:C语言中是用非0表示逻辑真的,用0表示逻辑假的。
C语言有构造类型,没有逻辑类型。
关系运算符号:注意8这个关系表达式是真的,所以9>8这个表达式的数值就是1。
如7<6这个关系表达式是假的,所以7<6这个表达式的数值就是0
b、考试最容易错的:就是intx=1,y=0,z=2;
x
函数的总结知识点第6篇1.函数的定义
函数是高考数学中的重点内容,学习函数需要首先掌握函数的各个知识点,然后运用函数的各种性质来解决具体的问题。
设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A-B为从集合A到集合B的一个函数,记作y=f(x),xA
2.函数的定义域
函数的定义域分为自然定义域和实际定义域两种,如果给定的函数的解析式(不注明定义域),其定义域应指的是使该解析式有意义的自变量的取值范围(称为自然定义域),如果函数是有实际问题确定的,这时应根据自变量的实际意义来确定,函数的值域是由全体函数值组成的集合。
3.求解析式
求函数的解析式一般有三种种情况:
(1)根据实际问题建立函数关系式,这种情况需引入合适的变量,根据数学的有关知识找出函数关系式。
(2)有时体中给出函数特征,求函数的解析式,可用待定系数法。
(3)换元法求解析式,f[h(x)]=g(x)求f(x)的问题,往往可设h(x)=t,从中解出x,代入g(x)进行换元来解。掌握求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 解除社保代理服务协议书
- 药材基地用工合同范本
- 维修电器员工合同范本
- 酒店股份转让合同范本
- 虾场承包合同转包协议书
- 绿化工人安全合同范本
- 金融机构贷款质押协议书
- 研究性学习在教学中的应用计划
- 装修安全责任合同范本
- 自愿放弃托管安全协议书
- 商务谈判经典案例全案(56个案例)
- 《环境影响评价》全套教学课件
- 《公路桥涵施工技术规范》JTG-T3650-2020培训
- 2024年天津市单位职工劳动合同(三篇)
- 2024秋期国家开放大学专科《液压与气压传动》一平台在线形考(形考任务+实验报告)试题及答案
- 胆石症病人的护理
- 四川省成都市2024年小升初英语试卷(含答案)
- 建筑施工安全生产标准化指导图册
- 渠道衬砌施工方案(渠道预制混凝土块)
- 2024年新课标高考政治真题试卷含答案
- 02S515排水检查井图集
评论
0/150
提交评论