远程温度监测系统设计本科论文_第1页
远程温度监测系统设计本科论文_第2页
远程温度监测系统设计本科论文_第3页
远程温度监测系统设计本科论文_第4页
远程温度监测系统设计本科论文_第5页
已阅读5页,还剩57页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西理工学院毕业设计题目远程温度监测系统设计学生姓名学号所在学院专业班级电子信息工程1204指导教师完成地点博远楼 2016年6月18日毕业论文﹙设计﹚任务书院(系)物电学院专业班级电子信息工程学生姓名一、毕业论文﹙设计﹚题目远程温度监测系统设计二、毕业论文﹙设计﹚工作自___2016__年__2_月_20_日起至__2016__年6月_20_日止三、毕业论文﹙设计﹚进行地点:物电学院实验室四、毕业论文﹙设计﹚的内容要求:温度远程监控在工业控制领域中有着十分重要的意义,在许多工业场合,需要对一些分散的、无人值守的现场温度数据进行定实时采集,同时发送简单的控制命令。传统温度远程监控系统的实现方式一般都需要自己建设并维护有线或无线网络,维护费用高。随着通信技术的发展,原有的远程监控系统已日益不能满足多方面的要求,温度数据无线传输设计。系统主要由现场温度监测端,数据传输模块和监控端组成,数据的传输由NRF24L01模块完成。具体要求如下:1、用微处理器(单片机或ARM)控制监控现场的温度信息采集和数据发送;2、采用温度传感器DS18B20和无线收发模块NRF24L01对试验现场温度数据进行远程无线测量和控制;3、完成系统的软件硬件设计;毕业论文﹙设计﹚应收集资料及参考文献:[1]黄贤武,郑筱霞.传感器原理及其应用[M].成都:电子科技大学出版社,2010.[2]俞国亮.MCS-51单片机原理与应用[M].北京:清华大学出版社,2010.[3]李斯伟,雷新生.数据通信技术[M].北京:人民邮电出版社,2009.[4]谢自美.电子线路设计实验测试[M].武汉:华中科技大学出版社,2010.进度安排:2月20日─3月1日:查阅资料、完成英文资料翻译并准备开题报告.3月2日─4月1日:完成开题报告,完成监控系统的监控软件设计.4月2日─5月1日:完成监控系统的硬件系统设计.5月2日─5月30日:搭建硬件系统并进行测试验证.准备验收。6月1日─6月10日:撰写毕业设计论文并提交论文6月11日─6月15日:毕业设计答辩。指导教师签名专业负责人签名学院领导签名批准日期2016-01-10远程温度监测系统设计(陕西理工学院物理与电信工程学院电子信息工程1204班,陕西汉中723003)指导教师:[摘要]提出了一种基于NRF24L01模块进行无线发射与接收的温度远程监测系统设计。该系统以AT89S51单片机为控制单元,采用数字温度传感器DS18B20和无线收发模块NRF24L01对试验现场温度数据进行远程无线测量,以及声光报警系统和LCD1602液晶显示。在设计中,有主副两个AT89S51单片机作为系统的核心,DS18B20对试验温度的实时采集,NRF24L01为系统提供数据的无线发射和接收,报警系统采用9102三极管驱动蜂鸣器来实现报警。整个系统包括主、从两个子系统设计,其中主系统完成对试验现场设定温度值、设定值显示、实际值显示、失控报警和接收数据功能;副系统完成温度采集、温度控制和发送数据的功能。该系统结构简单且实用、功能齐全,通用性很强,可被应用于许多工业生产领域,它可使操作人员与恶劣的工作环境分离开来,实现生产自动化,提高企业的生产效率。[关键词]AT89S51;温度传感器;NRF24L01;显示;报警DesignofremotetemperaturemonitoringsystemAuthor:ShiJiangjiang(Grade12,Class4,MajorofElectronicInformationEngineering,SchoolofPhysicsandTelecommunicationEngineeringofShaanxiUniversityofTechnology,Hanzhong723003,shaanxi)Tutor:JiaJiankeAbstract:ProposedremotetemperaturemonitoringsystemdesignbasedonNRF24L01modulewirelesstransmitterandreceiver.ThesystemAT89S51microcontrollerasthecontrolunit,digitaltemperaturesensorDS18B20andwirelesstransceivermoduleNRF24L01testsitetemperaturedataforremotewirelessmeasurement,aswellassoundandlightalarmsystemsandLCD1602LCD.Inthedesign,therearetwomainandAT89S51microcontrollerasthecoreofthesystem,DS18B20testtemperaturereal-timeacquisition,NRF24L01providedataforwirelesstransmissionandreceptionsystem,alarmsystemusing9102transistordrivetoachievethealarmbuzzer.Thesystemincludesthemain,fromtwosubsystemdesign,includingthemainsystemtocompletethetestsitesettemperaturevalue,setvalueisdisplayed,theactualvaluedisplay,alarmoutofcontrolandreceivingdatacapabilities;completesubsystemtemperatureacquisition,temperaturecontrolandtransmitdatafunction.Thedesignconcludesthatthissystemhasmanyadvantages,suchasitsuniqueness,simple,convenience,andsuchcommonusing.Itcanbewidelyusedinlotsofindustrialproducingandcontrollingfields,applyingthissystemcandepartoperatorsfromexecrableenvironment,realizeproducingautomation,andimprovecorporation’sproducingefficiency.Keywords:AT89S51;Temperaturesenior;NRF24L01;Display;Warning目录281571绪论 F24Lo1温湿度传感器图2-2发射端系统原理图复位电路电路图:复位是单片机的初始化操作,单片机在启动运行时,都需要先复位,它的作用是使CPU和系统中其它部件都处于一个确定的初始状态,并从这个状态开始工作。单片机的外部复位电路有上电自动复位和按键手动复位两种方式,按键手动复位又分为按键电平复位和按键脉冲复位。而本次设计选择按键电平复位,按复位键后复位端通过电阻与VCC电源接通。如图3-2所示,因为采用了12MHz,每机器周期为1us,则只需要2us以上时间的高电平,在RST引脚(在电容器C3的负端)出现高电平后的第二个机器周期执行复位,利用电容充电来实现,在接电的瞬间,RESET端的电位与VCC相同,随着充电电流的减少,RESET的电位逐渐下降,当按下RESET键,此时电源VCC经过电阻R1、R2分压,在RESET端产生复位高电平。该系统硬件包括微控制器,温度检测电路,键盘控制电路,时钟电路,显示,报警,驱动电路和外部RAM。基于AT89S51单片机,DS18B20的将温度信号传送到数字信号的检测。3系统的硬件设计与实现系统硬件电路主要分为:单片机AT89S51主、从系统、显示电路、接收电路、键盘电路、发射电路、温度采集电路。设计总框图如图3-1所示。温度采集温度采集AT89S51单片机(副)无线发射液晶显示AT89S51单片机(主)无线接收声光报警独立键盘图3-1总设计框图3.1系统硬件概述硬件电路是由单片机芯片AT89S51为控制核心,具有在线编程,丰富的中断源、灵活性强、低功耗等功能,能在3V低压工作;温度的采集由DS18B20来构成,它具有微型化、低功耗、高性能、抗干扰能力强、易配处理器等优点,特别适用于构成多点温度测控系统,可直接将温度转化成串行数字信号给单片机处理,且在同一总线上可以挂接多个传感器芯片;无线收发模块用NRF24L01,工作于2.4GHz~2.5GHzISM频段,NRF24L01功耗低,在以-6dBm的功率发射时,工作电流也只有9mA;接收时,工作电流只有12.3mA,多种低功率工作模式(掉电模式和空闲模式)使节能设计更方便;显示部份由1602LCD来完成;声光报警电路可以采用三极管驱动蜂鸣器及发光二极管来实现。3.2主要单元电路的设计3.2.1单片机主控制模块的设计主控单片机是以集成的电路芯块采用了超大规模技术把具有运算能力的微处理器(CPU),随机存取RAM(数据存储器),ROM(只读程序存储器),I/O(输入输出电路),可能还包括定时计数器,SCI(串行通信口),显示驱动电路(LED驱动电路),模拟多路转换及A/D转换器等电路集成到一块单片机上,构成一个最小然而很完善的计算机系统。这些电路能在软件的控制下准确快速的完成程序设计者事先规定的任务。总的而言单片机的特点可以归纳为以下几个方面:集成度高、存储容量大、外部扩展能力强、控制功能强、低电压、低功耗、性能价格比高、可靠性高这几个方面。单片机有着微处理器所不具备的功能,它可以独立地完成现代工业控制所要求的智能化控制功能这就是单片机的最大特点。然而单片机又不同于单板机,芯片在没有开发前,它只是具备功能极强的超大规模集成电路,如果赋予它特定的程序,它便是一个最小的、完整的微机控制系统。AT89S51单片机为40引脚双列直插芯片,如图3-2所示。有四个I/O口P0,P1,P2,P3,每一条I/O线都能独立地作输出或输入。AT89S51具有以下标准功能:4k字节Flash,256字节RAM,32位I/O口线,看门狗定时器,2个数据指针,三个16位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。另外,AT89S51可降至0Hz静态逻辑操作,支持2种软件可选择节电模式。空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。AT89S51单片机的管脚图如图3-2。图3-2AT89S51管脚图其引脚分配如下:P3.0:RXD,串行输入。P3.1:TXD,串行输出。P3.2:INT0,外部中断0输入。P3.3:INT1,外部中断1输入。P3.4:T0,计时计数器0输入。P3.5:T1,计时计数器1输入。P3.6:WR,外部数据存储器的写信号。P3.7:RD,外部数据存储器的读信号。单片机主控制电路即包括了单片机的复位电路和时钟电路。本设计采用的是内部时钟电路及所需的C语言程序。单片机内部有一个用于构成振荡器的高增益反相放大器,18引脚XTAL1是放大器的输入端,19引脚XTAL2是放大器的输出端,这两个引脚之间跨接的晶振和微调电容作为反馈元件一起构成一个稳定的自激振荡器。9引脚是单片机的复位输入端,接上电容,电阻及电阻和按钮组成手动复位电路。如图3-3所示。图3-3单片机复位和时钟电路3.2.2温度采集电路模块的设计在20世纪90年代中期温度传感器问世了。它是微电子技术、计算机技术和自动测试技术(ATE)的结晶。目前,国际上新型温度传感器正从模拟式向数字式、从集成化向智能化和网络化的方向飞速发展。在人民的日常生活和工农业生产中,数字式温度传感器DS18B20正是朝着精度准、功能完整、总线标准化、安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展。因此。我们的已经离不开对温度上的控制了。它在测温精度、转换时间、传输距离、分辨率等方面较都有了很大的改进,给用户带来了更方便和更令人满意的效果。可广泛用于工业、民用、军事等领域的温度测量及控制仪器、测控系统和大型设备中。温度采集电路如图3-4所示。我们取用数字式温度传感器DS18B20,DS18B20是DALLAS公司生产的单总线式数字温度传感器,具有微小型化、低功耗、高性能、搞干扰能力很强、易配处理器等优点,特别适用于构成多点温度测控系统,可直接将温度转化成串行数字信号(提供9位二进制数字)给单片机处理,且在同一总线上可以挂接多个传感器芯片。它具有3引脚TO-92小体积封装形式,温度测量范围为一般在-55℃~+125℃,可编程的位数在9位~12位A/D转换精度,被测温度用符号扩展的16位数字量方式串行输出,其工作电源既可在远端引入,也可采用寄生电源方式产生,多个DS18B20可以并联到2根及多根线上,CPU只需一根端口线就能与多个DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。它具有测量精度高,电路连接简单特点,此类传感器仅需要一条数据线进行数据传输,使用P10与DS18B20的I/O口连接,VCC接电源,GND接地。DS18B20的内部结构图示3-5。图3-4温度传感器应用电路电源检测电源检测64位ROM和单线接口存储器和控制器高速缓存器8位CRC生成器低温触发器高温触发器配置寄存器图3-5DS18B20内部结构3.2.3无线收发电路模块的设计NRF24L01是一款新型单片射频收发器件,工作于2.4GHz~2.5GHzISM频段。内置频率合成器、功率放大器、晶体振荡器、调制器等功能模块,并融合了增强ShockBurs技术,其中输出功率和通信频道可通过程序进行配置。NRF24L01功耗低,在以-6dBm的功率发射时,工作电流也只有9mA;接收时,工作电流只有12.3mA,多种低功率工作模式(掉电模式和空闲模式)使节能设计更方便。NRF24L01主要特性有GFSK调制:硬件集成OSI链路层;具有自动应答和自动再发射功能;片内自动生成报头和CRC校验码;数据传输率为lMb/s或2Mb/s;SPI速率为0Mb/s~10Mb/s;125个频道:与其他NRF24系列射频器件相兼容;QFN20引脚4mm×4mm封装;供电电压为1.9V~3.6V。NRF14L01引脚排列如图3-6所示。图3-6NRF24L01管脚图CE:使能发射或接收;CSN,SCK,MOSI,MISO:SPI引脚端,微处理器可通过此引脚配置nRF24L01:IRQ:中断标志位;VDD:电源输入端;VSS:电源地;XC2,XC1:晶体振荡器引脚;VDD_PA:为功率放大器供电,输出为1.8V;ANT1,ANT2:天线接口;IREF:参考电流输入。NFR24L01模块采用3.3V电压供电,其应用电路及电源转换电路如图3-7所示。图3-7NRF24L01应用电路3.2.4显示电路模块的设计如图3-8所示,采用1602LCD显示。1602字符型LCD通常有14条引脚线或16条引脚线的LCD,多出来的2条线是背光电源线VCC(15脚)和地线GND(16脚),其控制原理与14脚的LCD完全一样,具体各个脚的功能如表3-1。系统程序的设计陕西理工学院毕业设计表3-1LCD引脚功能表引脚符号功能说明1234567891011121314VSSVDDV0RSR/WEDB0DB1DB2DB3DB4DB5DB6DB7一般接地接电源(+5V)LCD对比度调整端,接正电源时对比度最弱,接地时对比度最高RS为寄存器选择,高电平时选数据寄存器、低电平时选指令寄存器。R/W为读写信号线,高电平时进行读操作,低电平时进行写操作。E(或EN)端为使能(enable)端,下降沿使能。底4位三态、双向数据总线0位(最低位)底4位三态、双向数据总线1位底4位三态、双向数据总线2位底4位三态、双向数据总线3位高4位三态、双向数据总线4位高4位三态、双向数据总线5位高4位三态、双向数据总线6位高4位三态、双向数据总线7位(最高位)(也是busyflag)由于1602LCD具有功耗低、寿命长、体积小、显示内容丰富、接口控制方便等优点。因此在各类电子产品中被广泛的推广和使用。本系统采用它来作为显示器件,不仅简化了硬件电路,而且极大的提高了系统的可靠性。如图3-9所示。1602LCD与单片机AT89S51的连接电路很简单。图3-8LCD1602管脚图图3-9LCD1602应用电路3.2.5报警电路模块的设计我们采用的蜂鸣器是一种一体化结构的电子讯响器,而不是555定时器,我们采用的蜂鸣器用直流电压供电,应用于计算机、打印机、复印机、报警器、电子玩具、汽车电子设备、电话机、定时器等电子产品中作发声器件。三极管工作属电流放大状态(就是射极跟随器),三极管的C极接地,其电压永远为0,e极电压跟随基级输入电压的变化而变化,Ue=Ub+0.7V:

当基级输入高电平时,三极管的e极电压为高电平,喇叭里没有(或很小)电流通过;

当基级输入为低电平时,三极管的e极电压为低电平,喇叭里有电流(Vb越低就越大)通过。

这里的三极管接法为射极跟随器,和普通的开关工作的三极管工作(e极接地,c极输出)有所不同。

射极跟随器的输出电压是跟随基极电压变化而变化的(Ue=Ub+0.7V),尽管当基极电压很高(Ub>Ue-0.7V)时,三极管确实是截止了(因为这时基极没有电流);而基极低电平最低的时候(输入端为0),三极管工作只能是接近于饱和状态,仍然属于放大状态(因为Ue=Ub+0.7V)。本设计应用三极管驱动蜂鸣器同时点亮发光二极管实现报警,其应用电路如图3-10所示。图3-10报警电路3.2.6电源电路设计供电电路采用USB接口。USB已经是一个业内标准了。电压是5~5.2V

电流300mA~500mA接口靠两端的是正负极,中间两条是数据的正负极,只要你的设备不接触“数据线”电脑不会识别为移动设备。(业内的标准数据线是“红、白、绿、黑”分别是5V+、DAT-、DAT+、5V-、高档型外加屏蔽层)如果只用提供电源,只用两条引线,设计产品额定用电不超过5V,电流不超500mA即可。该型产品已经很多很成熟。NRF24L01所需的电压是3.3V,所以中间采用了稳压芯片AMS1117。AMS1117是一款低压差的线性稳压器,当输出1A电流时,输入输出的电压差典型值1.2V。AMS1117除了能提供多种固定电压版本外(Vout=1.8V,2.5V,2.85V,3.3V,5V),还提供可调端输出版本,该版本能提供的输出电压范围为1.25V~13.8V。能(AS1117正常工作环境温度范围极宽,为-50℃~140℃),确保芯片和电源系统的稳定性。同时在产品生产中应用先进的修正技术,确保输出电压和参考源精度在±1%的精度范围内。3.2.7电路原理及说明将以上各个电路模块连接起来,即构成无线远程监控系统,总系统工作原理如下:温度传感器对实验现场的温度进行采集,副控芯片AT89S51对采集温度数据进行处理,将有用数据送给发射模块NRF24L01,主系统的接受模块NRF24L01接受数据送给主控芯片AT89S51,AT89S51对数据进行分析处理,对现场实际温度进行显示;另外,可以人工通过独立键盘对所测温度进行监控,先设定好规定的温度范围,当采集的温度超过此范围时,蜂鸣器响,同时点亮发光二极管,通过按键选择,可以独立实现声音报警、发光报警及声光同时报警;当检测温度不在设定范围内时,系统正常运行,时刻显示着现场的温度值。由于将传感器与电路部分结合在一起,因此,该传感器具有比其它类型的湿度传感器优越得多的性能。首先是传感器信号强度的增加增强了传感器的抗干扰性能,保证了传感器的长期稳定性,而A/D转换的同时完成,则降低了传感器对干扰噪声的敏感程度。最后,传感器可直接通过12C总线与任何类型的微处理器、微控制器系统连接,从而减少了接口电路的硬件成本,简化了接口方式。在AT89S51单片机和温度传感器DS18B20的基础上,系统环境温度智能控制。温度可设定在一定范围内动任意。该系统可以显示在液晶显示屏的时间,并保存监测数据,并自动地控制温度,当环境温度超过上限和下限的值。4系统程序的设计4.1主程序的设计主程序包括主系统程序设计,发射系统程序设计和报警程序设计。主系统程序负责键盘设定值的检测,上下门限设定值的显示,通过无线模块接收发射系统发送来的数据并显示在LCD上,并且判断接收的温度是否超出门限值,如果超出就进行报警操作。主系统流程即图4-1所示。键盘设定值检测键盘设定值检测设定值显示实际值显示接收副系统数据结束开始温度是否超出?报警YN图4-1主系统程序流程图发射系统负责对温度的数据采集,经过处理后通过无线模块发送出去。发射系统程序流程图如图4-2所示。温度采集温度采集数据处理实际值发送开始返回图4-2发射系统程序流程图报警程序通过对接收到的实际值与设定值进行比较,当温度小于报警下限值时,进行报警下限处理,当温度大于报警上限值时,进行报警上限处理。报警程序流程图如图4-3所示。设定值与实际值比较设定值与实际值比较温度小于报警下限?温度大于报警上限?报警上限处理NYYN报警下限处理开始返回图4-3温度报警子程序流程图主程序首先对LCD进行初始化,然后进行按键扫描,设定温度上下限值,接着初始化无线接收模块,然后温度数据,并判断是否超出设定范围,超过则启动报警程序,不超过则继续判断,如此循环。陕西理工学院毕业设计4.2发射系统程序的设计发射端主程序开始后先进行初始化设置。初始化的过程包括给相应的字符名称赋值,STC单片机的初始化,NRF24L01和DS18B20的初始化。没有中断的时候,发射端子系统处于等待状态,直到有中断需要响应时,单片机进入相应的中断服务程序。发射端单片机向DS18B20发送温度检测指令,然后接收DS18B20检测到的温度数据,转换成十进制数据,最后将NRF24L01置发射模式,将温度数据传输给接收端。4.3传输程序的设计传输程序包括发送数据和接收数据,即无线收发模块之间进行数据通信,设定好对应的通信地址和通信协议,即可实现数据的正确传送。本系统接收端采用NRF24L01无线模块接收发送端传来的温度数据,经单片机AT89S51在LCD1602液晶显示器上显示。温度过高则报警电路工作。其中包括NRF24L01模块和LCD1602液晶显示器的初始化。当接收方检测到有效的地址和CRC时,就将数据包存储在RX

FIFO中,同时中断标志位RX_DR置高,IRQ变低,产生中断,通知MCU去取数据。若此时自动应答开启,接收方则同时进入发射状态回传应答信号。最后接收成功时,若CE变低,则NRF24L01进入空闲模式1。在写寄存器之前一定要进入待机模式或掉电模式。4.4温度采集程序的设计温度采集程序主要是对温度传感器DS18B20编程,向1-线总线上写字节,传送字节和读字节,然后将采集的数据交给单片机进行处理。DS18B20只有3个引脚除去电源与地外,它采用独特的单线接口方式,在与单片机连接时它只需要一条信号线便可与控制器实现双向通信。DS18B20的封装:DQ为数字信号输入、输出端,GND为电源地,VDD为外部供电电源端(寄生电源接线方式时接地)。与DS18B20的所有通讯都是由一个单片机的复位脉冲和一个DS18B20的应答脉冲开始的。单片机先发一个复位脉冲,保持低电平时间最少480μs,最多不能超过960μs。然后,单片机释放总线,等待DS18B20的应答脉冲。DS18B20在接受到复位脉冲后等待15~60μs才发出应答脉冲。应答脉冲能保持60~240μs。单片机从发送完复位脉冲到再次控制总线至少要等待480μs。4.5显示程序的设计仿真与调试陕西理工学院毕业设计LCD1602显示程序,首先进行1602的初始化,然后就是执行写命令和写数据这两个子函数,实现温度数据的实时显示和按键操作的动态显示。LCD1602液晶显示的原理是利用液晶的物理特性,通过电压对其显示区域进行控制,有电就有显示,这样即可以显示出图形。液晶显示器具有厚度薄、适用于大规模集成电路直接驱动、易于实现全彩色显示的特点,目前已经被广泛应用在便携式电脑、数字摄像机、PDA移动通信工具等众多领域。接收端主程序开始后先进行初始化设置。初始化的过程包括给相应的字符名称赋值,STC单片机的初始化,LCD1602液晶的初始化。NRF24L01置接收模式,实时检测数据,当检测到温度数据之后,通过单片机计算处理,将完整的温度在液晶上显示。结论陕西理工学院毕业设计

5硬件调试及测试结果在没通电之前,先用万用表检查线路的正确性,并核对元器件的型号、规格是否符合要求。特别注意电源的正负极以及电源之间是否有短路,并重点检查地址总线、数据总线、控制总线是否存在相互间的短路或其他信号线的短路。晶体振荡器和电容应尽可能靠近单片机芯片安装,以减少寄生电容,更好是保证振荡器稳定和可靠地工作。在本系统中我们都进行了仔细的检杏,所以此步骤不会发生故障,这一步如果检查不细通电后可能会造成不可想象的后果,所以这一步也至关重要。通电后检查各器件引脚的电位,仔细测量各点电位是否正常,尤其应注意单片机的插座上的各点电位,若有高压,将有可能损坏单片机仿真器。同样,如果电压过低就没有能力驱动其负载。在断电的情况下,除单片机以外,用仿真插头将所连接电路与单片机仿真器的仿真接口相连,为软件调试做好准备。其中遇到的问题很多,如印制电路线不合格,中间有些许断路,造成调试的失败。还有USB电源供电电压不足的问题,电源电压经过供电给负载,电压下降0.5V,致使单片机不工作的问题。设置当前的温度上下限范围(0~29.0℃),测得当前试验室温度值为27.6℃。测试结果得表格。表5-1增加温度值报警(是/否)27.6℃28.6℃29.5℃30.0℃否否是是经过反复测试,系统温度设定范围为-55~125℃,试验室的温度范围0~29℃,以便观察测试结果。最小区分度为0.1℃,温度控制的误差≤1℃;能够测量并用数码管显示当前实际温度值;通过复位键可以使系统设定温度还原默认值,通过加一键和减一键可以以1℃步进设置预定温度;环境温度高于设定温度时,红色发光二极管点亮。达到了课题要求的技术指标。试验测试图示。图5-1试验室温度图5-2增加室内温度图5-3超出温度范围(报警) 图5-4超出温度范围(报警)结论本设计以单片机AT89S51为开发平台,NRF24L01无线收发模块,DS18B20温度传感器及LCD1602的特性及工作原理进行了深入研究。通过软件硬件相结合而设计了远程温度显示,远程温度报警系统。AT89S51单片机的采用,不仅便于数据采集,而且扩展了各种功能,比如显示、外部中断等。NRF24L01无线收发模块集成度高,集合了编码解码,发射接收功能,使用方便,使得系统的硬件和软件简单了许多。“一线”数字温度传感器DS18B20与软件处理相结合,进一步提高了系统的测温精度。在电路的设计中充分考虑了系统的可靠性和安全性。该系统具有操控简单方便、显示直观、功能多样、精确度高、电路简洁、成本低廉等诸多优点。对于单片机爱好者来说,也可以在系统的基础上进行其它功能的开发。经过,各项性能指标基本达到预期要求,也遇到一些问题,给系统上电后,液晶屏初始化失败,经检查发现,设计电路中液晶屏的8个数据端口少接了上拉电阻,并且主芯片的31管脚没有接电源,导致无法访问片内存储器,经过修改后,再次上电后,初始化成功。致谢毕业论文是在贾建科老师的指导下完成的,在毕设的设计过程中,老师对我们的指导起到了至关重要的作用,给我们找文献,找资料,耐心的指导我们各个模块的构成及其作用。

我要由衷感谢一起在实验室奋斗、探讨的同学们,正是由于他们的帮助和支持,我才能克服一个一个的困难和疑惑,直至毕业设计的顺利完成。

感谢所有慷慨提供文献的编写者,你们前人栽树后人乘凉的无私精神,让我能在原本磕磕绊绊的研讨撰写道路上,找到通往终点的最快捷径。

感谢曾经帮助过我的所有老师,衷心地感谢为评阅本论文而付出宝贵时间和辛勤劳动的老师们。致谢陕西理工学院毕业设计

参考文献[1]于海生,潘松峰,于培仁.微型计算机控制技术[M].北京:清华大学出版社,2009.[2]徐炜,姜晖,崔琛.通信电子技术[M].西安:西安电子科技大学出版社,2008.[3]朱定华.微机原理与接口技术[M].北京:清华大学出版社,2010.[4]李斯伟,雷新生.数据通信技术[M].北京:人民邮电出版社,2009.[5]谢自美.电子线路设计实验测试[M].武汉:华中科技大学出版社,2010.[6]梁廷贵.遥控电路可控硅触发电路语音电路分册[M].北京:科学技术文献出版社,2011.[7]黄贤武,郑筱霞.传感器原理及其应用[M].成都:电子科技大学出版社,2010.[8]俞国亮.MCS-51单片机原理与应用[M].北京:清华大学出版社,2010.[9]夏路易,石宗义.Protell99SE设计教程[M].北京:北京希望电子出版社,2009.[10]王用伦.微机控制技术[M].重庆:重庆大学出版社,2010.[11]李大寨.传感器电子制作DIY[J].北京:科学出版社,2011.[12]谭浩强.C语言程序设计教程[M].北京:高等教育出版社,2010.[13]彭伟.单片机C语言程序设计实训100例[M].北京:北京航空航天大学出版社,2010.[14]候殿有.单片机C语言设计[M].北京:人民邮电出版社,2010.[15]张毅刚.单片机原理及应用[M].北京:高等教育出版社,2010.[16]姜志海,赵艳雷.单片机的C语言[M].北京:电子工业出版社,2008.[17]郑锋,王巧芝,程丽平.51单片机典型应用开发实例大全[M].北京:中国铁道工业出版社,2011.[18]杜洋.爱上单片机[M].北京:人民邮电出版社,2011.[19]PottieG.Power-consciousdesignofwirelesscircuitsandsystems[C].ProceedingsoftheIEEE,2000,88(10):1528-1545..[20]Dallas

Semiconductor

Corporation.DS18B20

Programmable

Resolution

1-Wire

DigitalThermometer[P].Product

Datasheet.2002.[21]喻金钱,喻斌.短距离无线通信详解:基于单片机控制[M].北京:北京航空航天大学出版社,2009.[22]谭晖.nRF无线SOC单片机原理与高级应用[M].北京:北京航空航天大学出版社,2009.附录A外文文献TemperatureControlUsingaMicrocontrollerAbstractThispaperdescribesaninterdisciplinarydesignprojectwhichwasdoneundertheauthor’ssupervisionbyagroupoffourseniorstudentsintheDepartmentofEngineeringScienceatTrinityUniversity.Theobjectiveoftheprojectwastodevelopatemperaturecontrolsystemforanair-filledchamber.Thesystemwastoallowentryofadesiredchambertemperatureinaprescribedrangeandtoexhibitovershootandsteady-statetemperatureerroroflessthan1degreeKelvinintheactualchambertemperaturestepresponse.Thedetailsofthedesigndevelopedbythisgroupofstudents,basedonaMotorolaMC68HC05familymicrocontroller,aredescribed.Thepedagogicalvalueoftheproblemisalsodiscussedthroughadescriptionofsomeofthekeystepsinthedesignprocess.Itisshownthatthesolutionrequiresbroadknowledgedrawnfromseveralengineeringdisciplinesincludingelectrical,mechanical,andcontrolsystemsengineering.1IntroductionThedesignprojectwhichisthesubjectofthispaperoriginatedfromareal-worldapplication.AprototypeofamicroscopeslidedryerhadbeendevelopedaroundanOmegaTMmodelCN-390temperaturecontroller,andtheobjectivewastodevelopacustomtemperaturecontrolsystemtoreplacetheOmegasystem.Themotivationwasthatacustomcontrollertargetedspecificallyfortheapplicationshouldbeabletoachievethesamefunctionalityatamuchlowercost,astheOmegasystemisunnecessarilyversatileandequippedtohandleawidevarietyofapplications.ThemechanicallayoutoftheslidedryerprototypeisshowninFigure1.Themainelementofthedryerisalarge,insulated,air-filledchamberinwhichmicroscopeslides,eachwithatissuesampleencasedinparaffin,canbesetoncaddies.Inorderthattheparaffinmaintaintheproperconsistency,thetemperatureintheslidechambermustbemaintainedatadesired(constant)temperature.Asecondchamber(theelectronicsenclosure)housesaresistiveheaterandthetemperaturecontroller,andafanmountedontheendofthedryerblowsairacrosstheheater,carryingheatintotheslidechamber.Thisdesignprojectwascarriedoutduringacademicyear1996–97byfourstudentsundertheauthor’ssupervisionasaSeniorDesignprojectintheDepartmentofEngineeringScienceatTrinityUniversity.Thepurposeofthispaperistodescribetheproblemandthestudents’solutioninsomedetail,andtodiscusssomeofthepedagogicalopportunitiesofferedbyaninterdisciplinarydesignprojectofthistype.Thestudents’ownreportwaspresentedatthe1997NationalConferenceonUndergraduateResearch[1].Section2givesamoredetailedstatementoftheproblem,includingperformancespecifications,andSection3describesthestudents’design.Section4makesupthebulkofthepaper,anddiscussesinsomedetailseveralaspectsofthedesignprocesswhichofferuniquepedagogicalopportunities.Finally,Section5offerssomeconclusions.2ProblemStatementThebasicideaoftheprojectistoreplacetherelevantpartsofthefunctionalityofanOmegaCN-390temperaturecontrollerusingacustom-designedsystem.Theapplicationdictatesthattemperaturesettingsareusuallykeptconstantforlongperiodsoftime,butit’snonethelessimportantthatstepchangesbetrackedina“reasonable”manner.Thusthemainrequirementsboildownto·allowingachambertemperatureset-pointtobeentered,·displayingbothset-pointandactualtemperatures,and·trackingstepchangesinset-pointtemperaturewithacceptablerisetime,steady-stateerror,andovershoot.AlthoughnotexplicitlyapartofthespecificationsinTable1,itwasclearthatthecustomerdesireddigitaldisplaysofset-pointandactualtemperatures,andthatset-pointtemperatureentryshouldbedigitalaswell(asopposedto,say,throughapotentiometersetting).3SystemDesignTherequirementsfordigitaltemperaturedisplaysandsetpointentryaloneareenoughtodictatethatamicrocontrollerbaseddesignislikelythemostappropriate.Figure2showsablockdiagramofthestudents’design.Themicrocontroller,aMotorolaMC68HC705B16(6805forshort),istheheartofthesystem.Itacceptsinputsfromasimplefour-keykeypadwhichallowspecificationoftheset-pointtemperature,anditdisplaysbothset-pointandmeasuredchambertemperaturesusingtwo-digitseven-segmentLEDdisplayscontrolledbyadisplaydriver.Alltheseinputsandoutputsareaccommodatedbyparallelportsonthe6805.Chambertemperatureissensedusingapre-calibratedthermistorandinputviaoneofthe6805’sanalog-to-digitalinputs.Finally,apulse-widthmodulation(PWM)outputonthe6805isusedtodrivearelaywhichswitcheslinepowertotheresistiveheateroffandon.Figure3showsamoredetailedschematicoftheelectronicsandtheirinterfacingtothe6805.Thekeypad,aStorm3K041103,hasfourkeyswhichareinterfacedtopinsPA0{PA3ofPortA,configuredasinputs.Onekeyfunctionsasamodeswitch.Twomodesaresupported:setmodeandrunmode.Insetmodetwooftheotherkeysareusedtospecifytheset-pointtemperature:oneincrementsitandonedecrements.Thefourthkeyisunusedatpresent.TheLEDdisplaysaredrivenbyaHarrisSemiconductorICM7212displaydriverinterfacedtopinsPB0{PB6ofPortB,configuredasoutputs.Thetemperature-sensingthermistordrives,throughavoltagedivider,pinAN0(oneofeightanaloginputs).Finally,pinPLMA(oneoftwoPWMoutputs)drivestheheaterrelay.Softwareonthe6805implementsthetemperaturecontrolalgorithm,maintainsthetemperaturedisplays,andalterstheset-pointinresponsetokeypadinputs.Becauseitisnotcompleteatthiswriting,softwarewillnotbediscussedindetailinthispaper.Thecontrolalgorithminparticularhasnotbeendetermined,butitislikelytobeasimpleproportionalcontrollerandcertainlynotmorecomplexthanaPID.SomecontroldesignissueswillbediscussedinSection4,however.4TheDesignProcessAlthoughessentiallytheprojectisjusttobuildathermostat,itpresentsmanynicepedagogicalopportunities.Theknowledgeandexperiencebaseofaseniorengineeringundergraduatearejustenoughtobringhimorhertothebrinkofasolutiontovariousaspectsoftheproblem.Yet,ineachcase,realworldconsiderationscomplicatethesituationsignificantly.Fortunatelythesecomplicationsarenotinsurmountable,andtheresultisaverybeneficialdesignexperience.Theremainderofthissectionlooksatafewaspectsoftheproblemwhichpresentthetypeoflearningopportunityjustdescribed.Section4.1discussessomeofthefeaturesofasimplifiedmathematicalmodelofthethermalpropertiesofthesystemandhowitcanbeeasilyvalidatedexperimentally.Section4.2describeshowrealisticcontrolalgorithmdesignscanbearrivedatusingintroductoryconceptsincontroldesign.Section4.3pointsoutsomeimportantdeficienciesofsuchasimplifiedmodeling/controldesignprocessandhowtheycanbeovercomethroughsimulation.Finally,Section4.4givesanoverviewofsomeofthemicrocontroller-relateddesignissueswhichariseandlearningopportunitiesoffered.4.1MathematicalModelLumped-elementthermalsystemsaredescribedinalmostanyintroductorylinearcontrolsystemstext,andjustthissortofmodelisapplicabletotheslidedryerproblem.Figure4showsasecond-orderlumped-elementthermalmodeloftheslidedryer.ThestatevariablesarethetemperaturesTaoftheairintheboxandTboftheboxitself.Theinputstothesystemarethepoweroutputq(t)oftheheaterandtheambienttemperatureT¥.maandmbarethemassesoftheairandthebox,respectively,andCaandCbtheirspecificheats.μ1andμ2areheattransfercoefficientsfromtheairtotheboxandfromtheboxtotheexternalworld,respectively.It’snothardtoshowthatthe(linearized)stateequationscorrespondingtoFigure4areTakingLaplacetransformsof(1)and(2)andsolvingforTa(s),whichistheoutputofinterest,givesthefollowingopen-loopmodelofthethermalsystem:whereKisaconstantandD(s)isasecond-orderpolynomial.K,tz,andthecoefficientsofD(s)arefunctionsofthevariousparametersappearingin(1)and(2).Ofcoursethevariousparametersin(1)and(2)arecompletelyunknown,butit’snothardtoshowthat,regardlessoftheirvalues,D(s)hastworealzeros.Thereforethemaintransferfunctionofinterest(whichistheonefromQ(s),sincewe’llassumeconstantambienttemperature)canbewrittenMoreover,it’snottoohardtoshowthat1=tp1<1=tz<1=tp2,i.e.,thatthezeroliesbetweenthetwopoles.Bothoftheseareexcellentexercisesforthestudent,andtheresultistheopenlooppole-zerodiagramofFigure5.Obtainingacompletethermalmodel,then,isreducedtoidentifyingtheconstantKandthethreeunknowntimeconstantsin(3).Fourunknownparametersisquiteafew,butsimpleexperimentsshowthat1=tp1_1=tz;1=tp2sothattz;tp2_0aregoodapproximations.Thustheopen-loopsystemisessentiallyfirst-orderandcanthereforebewritten(wherethesubscriptp1hasbeendropped).Simpleopen-loopstepresponseexperimentsshowthat,forawiderangeofinitialtemperaturesandheatinputs,K_0:14_=Wandt_295s.14.2ControlSystemDesignUsingthefirst-ordermodelof(4)fortheopen-looptransferfunctionGaq(s)andassumingforthemomentthatlinearcontroloftheheaterpoweroutputq(t)ispossible,theblockdiagramofFigure6representstheclosed-loopsystem.Td(s)isthedesired,orset-point,temperature,C(s)isthecompensatortransferfunction,andQ(s)istheheateroutputinwatts.Giventhissimplesituation,introductorylinearcontroldesigntoolssuchastherootlocusmethodcanbeusedtoarriveataC(s)whichmeetsthestepresponserequirementsonrisetime,steady-stateerror,andovershootspecifiedinTable1.Theupshot,ofcourse,isthataproportionalcontrollerwithsufficientgaincanmeetallspecifications.Overshootisimpossible,andincreasinggainsdecreasesbothsteady-stateerrorandrisetime.Unfortunately,sufficientgaintomeetthespecificationsmayrequirelargerheatoutputsthantheheateriscapableofproducing.Thiswasindeedthecaseforthissystem,andtheresultisthattherisetimespecificationcannotbemet.Itisquiterevealingtothestudenthowusefulsuchanoversimplifiedmodel,carefullyarrivedat,canbeindeterminingoverallperformancelimitations.4.3SimulationModelGrossperformanceanditslimitationscanbedeterminedusingthesimplifiedmodelofFigure6,butthereareanumberofotheraspectsoftheclosed-loopsystemwhoseeffectsonperformancearenotsosimplymodeled.Chiefamongtheseare·quantizationerrorinanalog-to-digitalconversionofthemeasuredtemperatureand·theuseofPWMtocontroltheheater.Bothofthesearenonlinearandtime-varyingeffects,andtheonlypracticalwaytostudythemisthroughsimulation(orexperiment,ofcourse).Figure7showsaSimulinkTMblockdiagramoftheclosed-loopsystemwhichincorporatestheseeffects.A/DconverterquantizationandsaturationaremodeledusingstandardSimulinkquantizerandsaturationblocks.ModelingPWMismorecomplicatedandrequiresacustomS-functiontorepresentit.ThissimulationmodelhasprovenparticularlyusefulingaugingtheeffectsofvaryingthebasicPWMparametersandhenceselectingthemappropriately.(I.e.,thelongertheperiod,thelargerthetemperatureerrorPWMintroduces.Ontheotherhand,alongperiodisdesirabletoavoidexcessiverelay“chatter,”amongotherthings.)PWMisoftendifficultforstudentstograsp,andthesimulationmodelallowsanexplorationofitsoperationandeffectswhichisquiterevealing.4.4TheMicrocontrollerSimpleclosed-loopcontrol,keypadreading,anddisplaycontrolaresomeoftheclassicapplicationsofmicrocontrollers,andthisprojectincorporatesallthree.Itisthereforeanexcellentall-aroundexerciseinmicrocontrollerapplications.Inaddition,becausetheprojectistoproduceanactualpackagedprototype,itwon’tdotouseasimpleevaluationboardwiththeI/Opinsjumperedtothetargetsystem.Instead,it’snecessarytodevelopacompleteembeddedapplication.Thisentailsthechoiceofanappropri

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论