高中物理必备全部知识点总结及高中物理必备的二级结论_第1页
高中物理必备全部知识点总结及高中物理必备的二级结论_第2页
高中物理必备全部知识点总结及高中物理必备的二级结论_第3页
高中物理必备全部知识点总结及高中物理必备的二级结论_第4页
高中物理必备全部知识点总结及高中物理必备的二级结论_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

让“无理”变得有理物理一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。2.两个力的合力:F大+F小F合F大-F小。三个大小相等的共面共点力平衡,力之间的夹角为1200。3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。4.三力共点且平衡,则(拉密定理)。5.物体沿斜面匀速下滑,则。6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。此时速度、加速度相等,此后不等。7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。因其形变被忽略,其拉力可以发生突变,“没有记忆力”。8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。9.轻杆能承受纵向拉力、压力,还能承受横向力。力可以发生突变,“没有记忆力”。10、轻杆一端连绞链,另一端受合力方向:沿杆方向。二、运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物;在处理动力学问题时,只能以地为参照物。2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便:3.匀变速直线运动:时间等分时,,位移中点的即时速度,纸带点痕求速度、加速度:,,4.匀变速直线运动,v0=0时:时间等分点:各时刻速度比:1:2:3:4:5各时刻总位移比:1:4:9:16:25各段时间内位移比:1:3:5:7:9位移等分点:各时刻速度比:1∶∶∶……到达各分点时间比1∶∶∶……通过各段时间比1∶∶()∶……5.自由落体:(g取10m/s2)n秒末速度(m/s):10,20,30,40,50n秒末下落高度(m):5、20、45、80、125第n秒内下落高度(m):5、15、25、35、456.上抛运动:对称性:,,7.相对运动:共同的分运动不产生相对位移。8.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。先求滑行时间,确定了滑行时间小于给出的时间时,用求滑行距离。9.绳端物体速度分解:对地速度是合速度,分解为沿绳的分速度和垂直绳的分速度。10.两个物体刚好不相撞的临界条件是:接触时速度相等或者匀速运动的速度相等。11.物体滑到小车(木板)一端的临界条件是:物体滑到小车(木板)一端时与小车速度相等。12.在同一直线上运动的两个物体距离最大(小)的临界条件是:速度相等。三、运动定律:1.水平面上滑行:a=g2.系统法:动力-阻力=m总a3.沿光滑斜面下滑:a=gSin时间相等:450时时间最短:无极值:4.一起加速运动的物体,合力按质量正比例分配:,与有无摩擦(相同)无关,平面、斜面、竖直都一样。5.物块在斜面上A点由静止开始下滑,到B点再滑上水平面后静止于C点,若物块与接触面的动摩擦因数均为,如图,则=a6.几个临界问题:注意角的位置!a光滑,相对静止弹力为零弹力为零7.速度最大时合力为零:汽车以额定功率行驶时,四、圆周运动万有引力:1.向心力公式:2.在非匀速圆周运动中使用向心力公式的办法:沿半径方向的合力是向心力。3.竖直平面内的圆运动(1)“绳”类:最高点最小速度,最低点最小速度,上、下两点拉力差6mg。要通过顶点,最小下滑高度2.5R。最高点与最低点的拉力差6mg。(2)绳端系小球,从水平位置无初速下摆到最低点:弹力3mg,向心加速度2g(3)“杆”:最高点最小速度0,最低点最小速度。4.重力加速,g与高度的关系:5.解决万有引力问题的基本模式:“引力=向心力”6.人造卫星:高度大则速度小、周期大、加速度小、动能小、重力势能大、机械能大。速率与半径的平方根成反比,周期与半径的平方根的三次方成正比。同步卫星轨道在赤道上空,h=5.6R,v=3.1km/s7.卫星因受阻力损失机械能:高度下降、速度增加、周期减小。8.“黄金代换”:重力等于引力,GM=gR29.在卫星里与重力有关的实验不能做。10.双星:引力是双方的向心力,两星角速度相同,星与旋转中心的距离跟星的质量成反比。11.第一宇宙速度:,,V1=7.9km/s五、机械能:1.求机械功的途径:(1)用定义求恒力功。(2)用做功和效果(用动能定理或能量守恒)求功。(3)由图象求功。(4)用平均力求功(力与位移成线性关系时)(5)由功率求功。2.恒力做功与路径无关。3.功能关系:摩擦生热Q=f·S相对=系统失去的动能,Q等于摩擦力作用力与反作用力总功的大小。4.保守力的功等于对应势能增量的负值:。5.作用力的功与反作用力的功不一定符号相反,其总功也不一定为零。6.传送带以恒定速度运行,小物体无初速放上,达到共同速度过程中,相对滑动距离等于小物体对地位移,摩擦生热等于小物体获得的动能。六、动量:1.反弹:动量变化量大小2.“弹开”(初动量为零,分成两部分):速度和动能都与质量成反比。3.一维弹性碰撞:当时,(不超越)有,为第一组解。动物碰静物:V2=0,质量大碰小,一起向前;小碰大,向后转;质量相等,速度交换。碰撞中动能不会增大,反弹时被碰物体动量大小可能超过原物体的动量大小。当时,为第二组解(超越)4.A追上B发生碰撞,则(1)VA>VB(2)A的动量和速度减小,B的动量和速度增大(3)动量守恒(4)动能不增加(5)A不穿过B()。5.碰撞的结果总是介于完全弹性与完全非弹性之间。6.子弹(质量为m,初速度为)打入静止在光滑水平面上的木块(质量为M),但未打穿。从子弹刚进入木块到恰好相对静止,子弹的位移、木块的位移及子弹射入的深度d三者的比为7.双弹簧振子在光滑直轨道上运动,弹簧为原长时一个振子速度最大,另一个振子速度最小;弹簧最长和最短时(弹性势能最大)两振子速度一定相等。8.解决动力学问题的思路:(1)如果是瞬时问题只能用牛顿第二定律去解决。如果是讨论一个过程,则可能存在三条解决问题的路径。(2)如果作用力是恒力,三条路都可以,首选功能或动量。如果作用力是变力,只能从功能和动量去求解。(3)已知距离或者求距离时,首选功能。已知时间或者求时间时,首选动量。(4)研究运动的传递时走动量的路。研究能量转化和转移时走功能的路。(5)在复杂情况下,同时动用多种关系。9.滑块小车类习题:在地面光滑、没有拉力情况下,每一个子过程有两个方程:(1)动量守恒;(2)能量关系。常用到功能关系:摩擦力乘以相对滑动的距离等于摩擦产生的热,等于系统失去的动能。七、振动和波:1.物体做简谐振动,在平衡位置达到最大值的量有速度、动量、动能在最大位移处达到最大值的量有回复力、加速度、势能通过同一点有相同的位移、速率、回复力、加速度、动能、势能,只可能有不同的运动方向经过半个周期,物体运动到对称点,速度大小相等、方向相反。半个周期内回复力的总功为零,总冲量为,路程为2倍振幅。经过一个周期,物体运动到原来位置,一切参量恢复。一个周期内回复力的总功为零,总冲量为零。路程为4倍振幅。2.波传播过程中介质质点都作受迫振动,都重复振源的振动,只是开始时刻不同。波源先向上运动,产生的横波波峰在前;波源先向下运动,产生的横波波谷在前。波的传播方式:前端波形不变,向前平移并延伸。3.由波的图象讨论波的传播距离、时间、周期和波速等时:注意“双向”和“多解”。4.波形图上,介质质点的运动方向:“上坡向下,下坡向上”5.波进入另一介质时,频率不变、波长和波速改变,波长与波速成正比。6.波发生干涉时,看不到波的移动。振动加强点和振动减弱点位置不变,互相间隔。八、热学1.阿伏加德罗常数把宏观量和微观量联系在一起。宏观量和微观量间计算的过渡量:物质的量(摩尔数)。2.分析气体过程有两条路:一是用参量分析(PV/T=C)、二是用能量分析(ΔE=W+Q)。3.一定质量的理想气体,内能看温度,做功看体积,吸放热综合以上两项用能量守恒分析。九、静电学:1.电势能的变化与电场力的功对应,电场力的功等于电势能增量的负值:。2.电现象中移动的是电子(负电荷),不是正电荷。3.粒子飞出偏转电场时“速度的反向延长线,通过电场中心”。4.讨论电荷在电场里移动过程中电场力的功、电势能变化相关问题的基本方法:①定性用电力线(把电荷放在起点处,分析功的正负,标出位移方向和电场力的方向,判断电场方向、电势高低等);②定量计算用公式。5.只有电场力对质点做功时,其动能与电势能之和不变。只有重力和电场力对质点做功时,其机械能与电势能之和不变。6.电容器接在电源上,电压不变,;断开电源时,电容器电量不变,改变两板距离,场强不变。7.电容器充电电流,流入正极、流出负极;电容器放电电流,流出正极,流入负极。十、恒定电流:1.串联电路:U与R成正比,。P与R成正比,。2.并联电路:I与R成反比,。P与R成反比,。3.总电阻估算原则:电阻串联时,大的为主;电阻并联时,小的为主。4.路端电压:,纯电阻时。5.并联电路中的一个电阻发生变化,电流有“此消彼长”关系:一个电阻增大,它本身的电流变小,与它并联的电阻上电流变大;一个电阻减小,它本身的电流变大,与它并联的电阻上电流变小。6.外电路任一处的一个电阻增大,总电阻增大,总电流减小,路端电压增大。外电路任一处的一个电阻减小,总电阻减小,总电流增大,路端电压减小。7.画等效电路的办法:始于一点,止于一点,盯住一点,步步为营。8.在电路中配用分压或分流电阻时,抓电压、电流。9.右图中,两侧电阻相等时总电阻最大。10.纯电阻电路,内、外电路阻值相等时输出功率最大,。R1R2=r2时输出功率相等。11.纯电阻电路的电源效率:。12.纯电阻串联电路中,一个电阻增大时,它两端的电压也增大,而电路其它部分的电压减小;其电压增加量等于其它部分电压减小量之和的绝对值。反之,一个电阻减小时,它两端的电压也减小,而电路其它部分的电压增大;其电压减小量等于其它部分电压增大量之和。13.含电容电路中,电容器是断路,电容不是电路的组成部分,仅借用与之并联部分的电压。稳定时,与它串联的电阻是虚设,如导线。在电路变化时电容器有充、放电电流。直流电实验:1.考虑电表内阻的影响时,电压表和电流表在电路中,既是电表,又是电阻。2.选用电压表、电流表:①测量值不许超过量程。②测量值越接近满偏值(表针偏转角度越大)误差越小,一般应大于满偏值的三分之一。③电表不得小偏角使用,偏角越小,相对误差越大。3.选限流用的滑动变阻器:在能把电流限制在允许范围内的前提下选用总阻值较小的变阻器调节方便;选分压用的滑动变阻器:阻值小的便于调节且输出电压稳定,但耗能多。4.选用分压和限流电路:用阻值小的变阻器调节阻值大的用电器时用分压电路,调节范围才能较大。电压、电流要求“从零开始”的用分压。(3)变阻器阻值小,限流不能保证用电器安全时用分压。(4)分压和限流都可以用时,限流优先(能耗小)。5.伏安法测量电阻时,电流表内、外接的选择:“内接的表的内阻产生误差”,“好表内接误差小”(和比值大的表“好”)。6.多用表的欧姆表的选档:指针越接近R中误差越小,一般应在至4范围内。选档、换档后,经过“调零”才能进行测量。7.串联电路故障分析法:断路点两端有电压,通路两端没有电压。8.由实验数据描点后画直线的原则:(1)通过尽量多的点,(2)不通过的点应靠近直线,并均匀分布在线的两侧,(3)舍弃个别远离的点。9.电表内阻对测量结果的影响电流表测电流,其读数小于不接电表时的电阻的电流;电压表测电压,其读数小于不接电压表时电阻两端的电压。10.两电阻R1和R2串联,用同一电压表分别测它们的电压,其读数之比等于电阻之比。十一、磁场:1.粒子速度垂直于磁场时,做匀速圆周运动:,(周期与速率无关)。2.粒子径直通过正交电磁场(离子速度选择器):qvB=qE,。磁流体发电机、电磁流量计:洛伦兹力等于电场力。3.带电粒子作圆运动穿过匀强磁场的有关计算:从物理方面只有一个方程:,得出和;解决问题必须抓几何条件:入射点和出射点两个半径的交点和夹角。两个半径的交点即轨迹的圆心,两个半径的夹角等于偏转角,偏转角对应粒子在磁场中运动的时间.4.通电线圈在匀强磁场中所受磁场力没有平动效应,只有转动效应。磁力矩大小的表达式,平行于磁场方向的投影面积为有效面积。5.安培力的冲量。(q的计算见十二第7)十二、电磁感应:1.楞次定律:“阻碍”的方式是“增反、减同”楞次定律的本质是能量守恒,发电必须付出代价,楞次定律表现为“阻碍原因”。2.运用楞次定律的若干经验:(1)内外环电路或者同轴线圈中的电流方向:“增反减同”(2)导线或者线圈旁的线框在电流变化时:电流增加则相斥、远离,电流减小时相吸、靠近。(3)“×增加”与“·减少”,感应电流方向一样,反之亦然。(4)单向磁场磁通量增大时,回路面积有收缩趋势,磁通量减小时,回路面积有膨胀趋势。通电螺线管外的线环则相反。3.楞次定律逆命题:双解,“加速向左”与“减速向右”等效。4.法拉第电磁感应定律求出的是平均电动势,在产生正弦交流电情况下只能用来求感生电量,不能用来算功和能量。5.直杆平动垂直切割磁感线时所受的安培力:6.转杆(轮)发电机的电动势:7.感应电流通过导线横截面的电量:8.感应电流生热9.物理公式既表示物理量之间的关系,又表示相关物理单位(国际单位制)之间的关系。十三、交流电:1.正弦交流电的产生:中性面垂直磁场方向,线圈平面平行于磁场方向时电动势最大。最大电动势:与e此消彼长,一个最大时,另一个为零。2.以中性面为计时起点,瞬时值表达式为;以垂直切割时为计时起点,瞬时值表达式为3.非正弦交流电的有效值的求法:I2RT=一个周期内产生的总热量。4.理想变压器原副线之间相同的量:P,,T,f,5.远距离输电计算的思维模式:6.求电热:有效值;求电量:平均值十四、电磁场和电磁波:1.麦克斯韦预言电磁波的存在,赫兹用实验证明电磁波的存在。2.均匀变化的A在它周围空间产生稳定的B,振荡的A在它周围空间产生振荡的B。十五、光的反射和折射:1.光由光疏介质斜射入光密介质,光向法线靠拢。2.光过玻璃砖,向与界面夹锐角的一侧平移;光过棱镜,向底边偏转。4.从空气中竖直向下看水中,视深=实深/n4.光线射到球面和柱面上时,半径是法线。5.单色光对比的七个量:光的颜色偏折角折射率波长频率介质中的光速光子能量临界角红色光小小大小大小大紫色光大大小大小大小十六、光的本性:1.双缝干涉图样的“条纹宽度”(相邻明条纹中心线间的距离):。2.增透膜增透绿光,其厚度为绿光在膜中波长的四分之一。3.用标准样板(空气隙干涉)检查工件表面情况:条纹向窄处弯是凹,向宽处弯是凸。4.电磁波穿过介质面时,频率(和光的颜色)不变。5.光由真空进入介质:V=,6.反向截止电压为,则最大初动能十七、原子物理:1.磁场中的衰变:外切圆是衰变,内切圆是衰变,半径与电量成反比。2.经过几次、衰变?先用质量数求衰变次数,再由电荷数求衰变次数。3.平衡核方程:质量数和电荷数守恒。4.1u=931.5MeV。5.经核反应总质量增大时吸能,总质量减少时放能。衰变、裂变、聚变都是放能的核反应;仅在人工转变中有一些是吸能的核反应。6.氢原子任一能级上:E=EP+EK,E=-EK,EP=-2EK,量子数nEEPEKVT十八、物理发现史:1、胡克:英国物理学家;发现了胡克定律(F弹=kx)2、伽利略:意大利的著名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出S正比于t2并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。后由牛顿归纳成惯性定律。伽利略的科学推理方法是人类思想史上最伟大的成就之一。3、牛顿:英国物理学家;动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。6、布朗:英国植物学家;在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”。7、焦耳:英国物理学家;测定了热功当量J=4.2焦/卡,为能的转化守恒定律的建立提供了坚实的基础。研究电流通过导体时的发热,得到了焦耳定律。8、开尔文:英国科学家;创立了把-273℃作为零度的热力学温标。9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e。11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场。13、安培:法国科学家;提出了著名的分子电流假说。14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。15、劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。16、法拉第:英国科学家;发现了电磁感应,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念。17、楞次:德国科学家;概括试验结果,发表了确定感应电流方向的楞次定律。18、麦克斯韦:英国科学家;总结前人研究电磁感应现象的基础上,建立了完整的电磁场理论。19、赫兹:德国科学家;在麦克斯韦预言电磁波存在后二十多年,第一次用实验证实了电磁波的存在,测得电磁波传播速度等于光速,证实了光是一种电磁波。20、惠更斯:荷兰科学家;在对光的研究中,提出了光的波动说。发明了摆钟。21、托马斯·杨:英国物理学家;首先巧妙而简单的解决了相干光源问题,成功地观察到光的干涉现象。(双孔或双缝干涉)22、伦琴:德国物理学家;继英国物理学家赫谢耳发现红外线,德国物理学家里特发现紫外线后,发现了当高速电子打在管壁上,管壁能发射出X射线—伦琴射线。23、普朗克:德国物理学家;提出量子概念—电磁辐射(含光辐射)的能量是不连续的,E与频率υ成正比。其在热力学方面也有巨大贡献。24、爱因斯坦:德籍犹太人,后加入美国籍,20世纪最伟大的科学家,他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论。提出了“质能方程”。25、德布罗意:法国物理学家;提出一切微观粒子都有波粒二象性;提出物质波概念,任何一种运动的物体都有一种波与之对应。26、卢瑟福:英国物理学家;通过α粒子的散射现象,提出原子的核式结构;首先实现了人工核反应,发现了质子。27、玻尔:丹麦物理学家;把普朗克的量子理论应用到原子系统上,提出原子的玻尔理论。28、查德威克:英国物理学家;从原子核的人工转变实验研究中,发现了中子。29、威尔逊:英国物理学家;发明了威尔逊云室以观察α、β、γ射线的径迹。高中物理必推二级结论物理概念、规律和课本上的知识是“一级物理知识”,此外,有一些在做题时常常用到的物理关系或者做题的经验,叫做“二级结论”。这是在一些常见的物理情景中,由基本规律和基本公式导出的推论,或者解决某类习题的经验,这些知识在做题时出现率非常高,如果能记住这些二级结论,那么在做填空题或者选择题时就可以直接使用。在做计算题时,虽然必须一步步列方程,不能直接引用二级结论,但是记得二级结论能预知结果,可以简化计算和提高思维起点,因此也是有用的。一般地讲,做的题多了,细心的同学自然会熟悉并记住某些二级结论。如果刻意加以整理、理解和记忆,那么二级结论就能发挥出更大的作用。常说内行人“心中有数”,二级结论就是物理内行心中的“数”。运用“二级结论”的风险是出现张冠李戴,提出两点建议:1.每个“二级结论”都要熟悉它的推导过程,一则可以在做计算题时顺利列出有关方程,二则可以在记不清楚时进行推导。2.记忆“二级结论”,要同时记清它的适用条件,避免错用。一、静力学1.几个力平衡,则一个力与其它力的合力等大、反向、共线。几个力平衡,仅其中一个力消失,其它力保持不变,则剩余力的合力是消失力的相反力。几个力平衡,将这些力的图示按顺序首尾相接,形成闭合多边形(三个力形成闭合三角形)。2.两个力的合力:三个大小相等的共点力平衡,力之间的夹角为120°。3.研究对象的选取整体法——分析系统外力;典型模型——几物体相对静止隔离法——分析系统内力必须用隔离法(外力也可用隔离法)4.重力——考虑与否①力学:打击、碰撞、爆炸类问题中,可不考虑,但缓冲模型及其他必须考虑;②电磁学:基本粒子不考虑,但宏观带电体(液滴、小球、金属棒等)必须考虑重力。5.轻绳、轻杆、轻弹簧弹力(1)轻绳:滑轮模型与结点模型①滑轮模型——轻绳跨过光滑滑轮(或光滑挂钩)等,则滑轮两侧的绳子是同一段绳子,而同一段绳中张力处处相等;②结点模型——几段绳子栓结于某一点,则这几段绳子中张力一般不相等。(2)轻杆:铰链模型与杠杆模型①铰链模型——轻杆,而且只有两端受力,则杆中弹力只沿杆的方向;②杠杆模型——轻杆中间也受力,或者重杆(重力作用于重心),则杆中弹力一般不沿杆的方向,杆中弹力方向必须用平衡条件或动力学条件分析。“杠杆模型”有两个变化,即插入墙中的杆或者被“焊接”在小车上的杆。(3)轻弹簧:①弹簧中弹力处处相等,②若两端均被约束,则弹力不能突变;一旦出现自由端,弹力立即消失。6.物体沿斜面匀速下滑,则。7.被动力分析(1)被动力:弹力、静摩擦力()(2)分析方法:①产生条件法——先主动力,后被动力;②假设法——假设这个力存在,然后根据平衡或动力学条件计算:若算得为负,即这个力存在,且方向与假设方向相反;若算得为零,则表示此力不存在。二、运动学1.在描述运动时,在纯运动学问题中,可以任意选取参考系;在处理动力学问题(用运动定律求加速度、求功、算动量)时,只能以地面为参考系。2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总会带来方便:3.匀变速直线运动:五个参量,知三才能求二。位移中点的瞬时速度:,纸带法求速度、加速度:,逐差法:①在纸带上标出、、…,注意计数周期T与打点周期T0的关系 ②依据,若是连续6段位移,则有:,,三式联立,得:4.匀变速直线运动,v0=0时:时间等分点:各时刻速度比:1:2:3:4:5 各时刻总位移比:1:4:9:16:25 各段时间内位移比:1:3:5:7:9位移等分点:各点速度比:1∶∶∶…… 到达各分点时间比:1∶∶∶…… 通过各段时间比:1∶∶()∶……5.自由落体:g取10m/s2 n秒末速度(m/s):10,20,30,40,50 n秒末下落高度(m):5、20、45、80、125 第n秒内下落高度(m):5、15、25、35、456.上抛运动:对称性:,,7.“刹车陷阱”,应先求滑行至速度为零即停止的时间t0,确定了滑行时间t大于t0时,用或s=v0t0/2,求滑行距离;若t小于t0时8.追及、相遇问题匀减速追匀速:恰能追上或恰好追不上v匀=v匀减v0=0的匀加速追匀速:v匀=v匀加时,两物体的间距最大dmax同时同地出发两物体相遇:位移相等,时间相等。A与B相距d,A追上B:xA=xB+d,相向运动相遇时:sA+sB=d。9.物体刚好滑到小车(木板)一端的临界条件是:物体滑到小车(木板)一端时与小车速度相等。10.绳(杆)连接:沿绳方向分速度相等——将两个物体的实际速度沿绳、垂直绳方向分解。11.小船过河:⑴当船速大于水速时①船头的方向垂直于水流的方向时,所用时间最短,②合速度垂直于河岸时,航程s最短s=dd为河宽⑵当船速小于水速时①船头的方向垂直于水流的方向时,所用时间最短,dv船dv船v合v水12.平抛物体的运动:(1)平抛运动是匀变速曲线运动,其加速度恒定为g,将不同时刻的瞬时速度起点移至同一点,则速度矢量的末端在同一竖直线上。(2)平抛运动的速度偏转角θ与位移偏转角α满足:tanθ=2tanα.该结论有两个推论:①末速度反向延长线过该过程水平位移的中点;②位移延长线过末速度竖直分量的中点。(3)平抛运动时间决定因素:①竖直下落高度确定,则由竖直高度确定:②水平位移确定,则由水平初速度确定:13.斜抛运动:(1)上升至最高点时,竖直分速度减为0,水平分速度等于初速度水平分量;(2)上升与下降过程对称,到最高点前运动可视为反向平抛运动,过最高点后运动可视为平抛运动;(3)抛射角为45°时,水平射程最大。三、牛顿运动定律1.系统的牛顿第二定律:,(整体法——求系统外力)2.沿粗糙水平面滑行的物体:a=μg沿光滑斜面下滑的物体:a=gsinα 沿粗糙斜面下滑的物体a=g(sinα-μcosα)3.沿如图光滑斜面下滑的物体:垂直于斜面垂直于斜面竖直沿角平分线滑下最快当α当α=45°时所用时间最短小球下落时间相等小球下落时间相等小球下落时间相等4.一起加速运动的物体系,若力是作用于上,则和的相互作用力为αFααFαFααFm1αFαFm16.下面几种物理模型,在临界情况下,a=gtanαααaααaaaααaaaaa光滑,相对静止弹力为零相对静止光滑,弹力为零Fa7.如图示物理模型,刚好脱离时。弹力为零,此时速度相等,加速度相等,之前整体分析,之后隔离FaaFaFg 最高点分离在力F作用下匀加速运动在力F作用下匀加速运动B8.下列各模型中,速度最大时合力为零,速度为零时,加速度最大BFFBBFF9.超重:ay向上;(匀加速上升,匀减速下降、竖直平面圆周运动最低点)失重:ay向下;(匀减速上升,匀加速下降、竖直平面圆周运动最高点)四、圆周运动万有引力1.向心力公式:2.变速圆周运动动力学:沿半径方向外力改变速度方向,沿切线方向外力改变速度大小。3.竖直平面内的圆运动(1)“绳”类:最高点最小速度,最低点最小速度,要通过顶点,最小下滑高度2.5R.最高点与最低点的拉力差6mg.(2)绳端系小球,从水平位置无初速下摆到最低点:弹力3mg,向心加速度2g(3)“杆”:最高点最小速度0,最低点最小速度. 对最高点(v临=)v>v临,杆对小球为拉力v=v临,杆对小球的作用力为零v<v临,杆对小球为支持力4.海平面重力加速度,g与海拔高度的关系:5.解决万有引力问题的基本模式:“引力=向心力”,只选向心力公式。6.人造卫星:加速度,线速度,角速度,周期高度大则加速度小、线速度小、角速度小、周期大。同一轨道上各卫星加速度、线速度、角速度、周期均相同。v2v2v1v3v4由卫星的运动学参量求不出卫星的质量和所受的引力。同步卫星轨道在赤道上空,,。7.卫星变轨:8.天体质量可用绕它做圆运动的行星或者卫星求出:9.天体密度可用近地卫星的周期求出10.卫星因受阻力损失机械能:高度下降、速度反而增加、周期减小。11.“黄金代换”:地面物体所受的重力等于引力,12.在卫星里与重力有关的实验不能做(完全失重)。13.双星:引力是双方的向心力,两星角速度相同,星与旋转中心的距离、星的线速度都跟星的质量成反比。14.第一宇宙速度(近地飞行的速度,卫星的最小发射速度):,第二宇宙速度(脱离地球所需之起飞速度):。第三宇宙速度(飞离太阳系所需之起飞速度):15.开普勒三定律(1)行星绕恒星沿椭圆轨道运动,恒星位于椭圆的一个焦点上。(2)连接行星与恒星的矢径在相同时间内扫过相同的面积。所以,近地点速度大而远地点速度小。两处的速度与到地心的距离成反比:。(3)行星轨道的半长轴的三次方与运动周期的二次方成正比:。16.卫星引力势能:,卫星动能,卫星机械能同一卫星在半长轴为a=R的椭圆轨道上运动的机械能,等于半径为R圆周轨道上的机械能。五、功和能1.判断某力是否作功,做正功还是负功:①F与l的夹角(恒力);②F与v的夹角(曲线运动的情况);③能量变化(两个相联系的物体作曲线运动的情况)2.求功的六种方法①W=Flcosα(恒力)定义式②W=Pt(变力,恒力)③W=△Ek(变力,恒力)④W外=△E(除重力外其他力做功的变力,恒力)⑤图象法(变力,恒力)⑥气体做功:W=P△V(P——气体的压强;△V——气体的体积变化)3.动摩擦因数处处相同,克服摩擦力做功W=µmgs4.功能关系各力做功功的正负与能量增减的对应关系功能关系表达式合外力做功保守力做功重力做功弹簧弹力做功电场力做功一对滑动摩擦力做功之和除重力以外的其他外力做功安培力做功归纳为五大功能关系:(1)合外力做功与动能变化的关系——动能定理(2)重力、弹簧弹力、电场力(保守力)做功与相关势能变化的关系——势能定理(3)除重力以外的其他外力做功与机械能变化的关系——功能原理(机械能定理)(4)一对滑动摩擦力做功之和与生热的关系——=-Wf总(5)安培力做功与电能变化的关系。6.电场力做功的计算方法:(1)由公式W=Flcosθ计算,此公式只适用于匀强电场.可变形为W=qEd(其中d=lcosθ),式中d为电荷初、末位置在电场方向上的位移.(2)由电场力做功与电势能改变的关系计算:W=-ΔEp=qU.计算时有两种方法:①三个量都取绝对值,先计算出功的数值.然后再根据电场力的方向与电荷移动位移方向间的夹角确定是电场力做正功,还是电场力做负功.②代入符号,将公式写成WAB=qUAB,特别是在比较A、B两点电势高低时更为方便:先计算UAB=WAB/q,若UAB>0,即φA-φB>0,则φA>φB;若UAB<0,即φA-φB<0,则φA<φB.7.电功与电热(1)纯电阻电路:如果电流通过某个电路时、它所消耗的电能全部转化为内能,如电炉、电烙铁、白炽灯,这种电路叫做纯电阻电路.在纯电阻电路中:电能全部转化为内能,电功和电热相等,电功率和热功率相等.(2)非纯电阻电路:如果电流通过某个电路时,是以转化为内能以外的其他形式的能为目的,发热不是目的,而是难以避免内能损失.如电动机、电解槽、给蓄电池充电等,这种电路叫做非纯电阻电路.在非纯电阻电路中,电路消耗的电能W=UIt分为两部分,一大部分转化为其他形式的能;另一部分转化为内能Q=I2Rt.此时有W=UIt=E其它+Q,故UIt>I2Rt.此时电功只能用W=UIt计算,电热只能用Q=I2Rt计算.注:W=UIt算电功,Q=I2Rt算电热,适合任何电路,但W=Q只适合于纯电阻电路。8.安培力做功与能量转化EErR(2)电动机模型:安培力做正功的过程是电能转化为其它形式能量(动能、焦耳热等)的过程,安培力做多少正功,就有多少电能转化为其它形式能量。(3)发电机模型:因为多数情况下,安培力在电磁感应现象中是以阻力的形式出现的。所以,感应电流所受到的安培力在电磁感应现象中做负功。安培力做负功的过程是其它形式能量转化为电能的过程,克服安培力做多少功,就有多少其它形式能量转化为电能.如图所示,导体棒在恒力F作用由静止开始运动。①导体在达到稳定状态之前,外力移动导体所做的功,一部分用于克服安培力做功,转化为产生感应电流的电能或最后转化为焦耳热;另一部分用于增加导体的动能.②导体在达到稳定状态之后,外力移动导体所做的功,全部用于克服安培力做功,转化为产生感应电流的电能并最后转化为焦耳热.六、静电场1.电势能的变化与电场力的功对应,电场力的功等于电势能增量的负值:。2.金属导体中的载流子是电子(负电荷),不是正电荷。3.讨论电荷在电场里移动过程中电场力的功、电势能变化相关问题的基本方法:定性用电场线(把电荷放在起点处,分析功的正负,标出位移方向和电场力的方向,判断电场方向、电势高低等);定量计算用公式。4.只有电场力对质点做功时,其动能与电势能之和不变。只有重力和电场力对质点做功时,其机械能与电势能之和不变。5.电容器接在电源上,电压不变;断开电源时,电容器电量不变;改变两板距离,,故场强不变。6.电容器充电电流,流入正极、流出负极;电容器放电电流,流出正极,流入负极。七、磁场安培力方向一定垂直通电导线与磁场方向决定的平面,即同时有FA⊥l,FA⊥B。带电粒子垂直进入磁场做匀速圆周运动:,(周期与速度无关)。在有界磁场中,粒子通过一段圆弧,则圆心一定在这段弧两端点连线的中垂线上。半径垂直速度方向,即可找到圆心,半径大小由几何关系来求。带电粒子在圆形磁场中做圆周运动,沿着半径进入的一定沿着半径方向离开;直线边界入射角度和出射角度相等。粒子沿直线通过正交电、磁场(离子速度选择器),。与粒子的带电性质和带电量多少无关,与进入的方向有关。八、恒定电流1.串连电路:总电阻大于任一分电阻;,;,2.并联电路:总电阻小于任一分电阻;;;;和为定值的两个电阻,阻值相等时并联值最大右图中,两侧电阻相等时总电阻最大路端电压:纯电阻时,随外电阻的增大而增大。并联电路中的一个电阻发生变化,电流有“此消彼长”关系:一个电阻增大,它本身的电流变小,与它并联的电阻上电流变大:一个电阻减小,它本身的电流变大,与它并联的电阻上电流变小。外电路任一处的一个电阻增大,总电阻增大,总电流减小,路端电压增大。外电路任一处的一个电阻减小,总电阻减小,总电流增大,路端电压减小。8.,分别接同一电源:当时,输出功率。串联或并联接同一电源:。9.含电容电路中,电容器是断路,电容不是电路的组成部分,仅借用与之并联部分的电压。稳定时,与它串联的电阻是虚设,如导线。在电路变化时电容器有充、放电电流。九、电磁感应1.楞次定律:“阻碍”的方式是“增反、减同”楞次定律的本质是能量守恒,发电必须付出代价,楞次定律表现为“阻碍原因”。2.运用楞次定律的若干经验:(1)内外环电路或者同轴线圈中的电流方向:“增反减同”(2)导线或者线圈旁的线框在电流变化时:电流增加则相斥、远离,电流减小时相吸、靠近。(3)“×增加”与“·减少”,感应电流方向一样,反之亦然。(4)单向磁场磁通量增大时,回路面积有收缩趋势,磁通量减小时,回路面积有膨胀趋势。通电螺线管外的线环则相反。3.直线电流i旁导体框:最大时(,)或为零时(,)框均不受力。4.楞次定律的逆命题:双解,加速向左=减速向右5.两次感应问题:先因后果,或先果后因,结合安培定则和楞次定律依次判定。6.感应电流通过导线横截面的电量:7.法拉第电磁感应定律求出的是平均电动势,在产生正弦交流电情况下只能用来求感生电量,不能用来算功和能量。8.一个含有自感线圈的电路与电源接通或断开时,由于自感线圈的“电惯性”,电流只能渐变而不能突变(前提是有闭合回路);当电流达到稳定值时,没有感应电动势产生,此时自感线圈就是普通导线。利用这一特点可以快速解答相关问题。十、交变电流1.交流电四种值的运用峰值的运用:计算电容器的击穿电压。瞬时值的运用:计算安培力的瞬时值、氖泡发光、电功率瞬时值、通断电时间。平均值的运用:计算通过导体横截面的电量。有效值的运用:计算与电流热效应有关的量(如电功、电功率等)、保险丝的熔断电流、电机的铭牌上所标的值、交流电表的示数。2.正弦交流电的产生:中性面垂直磁场方向,线圈平面平行于磁场方向时电动势最大。最大电动势:与e此消彼长,一个最大时,另一个为零。3.以中性面为计时起点,瞬时值表达式为;以平行面为计时起点,瞬时值表达式为4.非正弦交流电的有效值的求法:I2RT=一个周期内产生的总焦耳热。5.理想变压器原副线之间相同的量:P,,T,f,6.远距离输电计算的思维模式:十一、选修3-5(一)碰撞与动量守恒1、动量守恒是矢量守恒(1)总动量的方向保持不变。(2)矢量方程:注意规定好正方向,各动量代入正负号计算。2、人船模型解决这种问题的前提条件是要两物体的初动量为零(或某方向上初动量为零),画出两物体的运动示意图有利于发现各物理量之间的关系,特别提醒要注意各物体的位移是相对于地面的位移(或该方向上相对于地面的位移)。3、碰撞模型(1)弹性碰撞要熟悉解方程的方法:移项,变形,将二次方程组化为一次方程组: ……① ……②则此时只需将①②两式联立,即可解得的值:v1′=eq\f(2m2v2+(m1-m2)v1,m1+m2)v2′=eq\f(2m1v1+(m2-m1)v2,m1+m2)物体A以速度v1碰撞静止的物体B,则有3类典型情况:①若mA=mB,则碰撞后两个物体互换速度:v1′=0,v2′=v1;②若mA>>mB,则碰撞后A速度不变,B速度为A速度的两倍:v1′=v1,v2′=2v1,比如汽车运动中撞上乒乓球;③若mA<<mB,则碰撞后B仍然静止,而A速度反向,大小不变:v2′=0,v1′=-v1.比如乒乓球碰墙、撞地反弹。另外两种一般情况介于上述情况之间,即:mA>mB,碰撞后A速度方向不变;mA<mB,碰撞后A速度方向反向。所以,在做“验证碰撞中动量守恒定律”实验时,要求入射小球质量大于被碰小球mA>mB。(2)完全非弹性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论