新课标2017春高中数学解三角形1正弦定理和余弦定理第2课时余弦定理课时作业新人教B版必修5资料_第1页
新课标2017春高中数学解三角形1正弦定理和余弦定理第2课时余弦定理课时作业新人教B版必修5资料_第2页
新课标2017春高中数学解三角形1正弦定理和余弦定理第2课时余弦定理课时作业新人教B版必修5资料_第3页
新课标2017春高中数学解三角形1正弦定理和余弦定理第2课时余弦定理课时作业新人教B版必修5资料_第4页
新课标2017春高中数学解三角形1正弦定理和余弦定理第2课时余弦定理课时作业新人教B版必修5资料_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2017春高中数学第1章解三角形1.1正弦定理和余弦定理第2课时余弦定理课时作业新人教B版必修5TOC\o"1-5"\h\z课时作业>>>>> KE-SHI-ZUO-YE ⑶,基础巩固9一、选择题1.在^ABC中,b=5,c=5谯,A=30°,则a等于|导学号275420471(A)A.5 B.4C.3 D.10[解析]由余弦定理,得a2=b2+c2—2bccosA,a2=52+(5\'3)2-2X5X5--/3Xcos30°,Aa2=25,Aa=5.2.在△ABC中,已知a2=b2+c2+bc,则角A等于导学号27542048(C)A.B.A.C.2nC.2nT2n[解析]\*a2=b2+c2+bc,Ab2+c2—a2=-bc,b2+c2—a2—bc 1'cosA= 2bc =而=-2,一^,2n又•.•0<A<n,;.A=33.(2016•全国卷I文,4)△ABC的内角A、B、C的对边分别为a、b、c.已知a=\/5,.2一一 ,c=2,cosA=a,则b=导学号27542049(D)3A.B.•血C.2 D.3[解析]由余弦定理,得4+b2-2X2bcosA=5.整理得3b2-8b-3=0,解得b=3或b=-;(舍去),故选D.34.在△ABC中,a:b:c=1:1:镜,则cosC的值为|导学号27542050*D)A.B.A.1c1c-C.21D.—7乙[解析]设a=b=k,c=\;3k(k>0),•.cosa2+b2—c2k2+k2—3k22ab2k21——2故选D.5.AABC的内角•.cosa2+b2—c2k2+k2—3k22ab2k21——2故选D.5.AABC的内角A、B、C的对边分别为a、b、c,若a、b、c满足b2=ac,且c=2a,则cosB=导学号27542051(B)B.C.专D.[解析]•••b2=ac,且c=2a,由余弦定理,得cosB=1a2+c2—b2a2+4a2—aX2a32ac2a・2a6.(2015•广东文,5)设4ABC的内角A、B、C的对边分别为a、b、c.若a=2,c=2\,13,cosA=方-,且b<c,则b=导学号27542052(C)乙A.3B.C.2D.[解析]由余弦定理,得a2=b2+c2-2bccosA,4=b2+12—6b,即b2—6b+8=0,/.b=2或b=4.又,.,b<c,;.b=2.、填空题7.以4、5、6为边长的三角形一定是锐一角形. (填:锐角、直角、钝角)导学号27542053[解析]由题意可知长为6的边所对的内角最大,设这个最大角为a,则cosa=16+25—361厂“。o1X^=8>0,因此0°<°<90°.8.若2、3、x为三边组成一个锐角三角形,则 x的取值范围为(\后,\;五).导学号27542054[解析]长为3的边所对的角为锐角时,X2+4—9>0,・,.x>%;5长为x的边所对的角为锐角时,4+9—x2>0,・・・x<、/1L・•・、..j5<x<\;1i三、解答题9.在△ABC中,已知sinC=1,&=2第,b=2,求边c.|导学号27542055乙TOC\o"1-5"\h\z1 n 5n[解析]・・金冠=%,且0<C<n,AC为"或二.2 6 6当C=?时,cosC=T,6 2此时,C2a2-\-b22abcosC4,Bpc2.当C=5n时,cosC=一苧,此时,c2=a2+b2—2abcosC=28,即c=2\17.10.设4ABC的内角A、B、C所对边的长分别是a、b、c,且b=3,c=1,AABC的面积为M2,求cosA与a的值.I导学号275420而1 272 . .[解析]由三角形面积公式,得S=-X3X1^sinA=\;2,AsinA= ,,「sinzA+cos2A2 3=1.AcosA=AcosA=±,:1—sin2A=±8 ,11-9=±3.①当cosA=1时,由余弦定理,得3a2=b2+c2-2bccosA=32+12-2X1X3X-|=8,3②当cosA=-1时,由余弦定理,得3a2=bz+c2—2bccosA=32+12—2X1X3X(—;)=12,3.\a=2--..'3能力提升9一、选择题1.A.在^ABC中,AB=3,BC=仄,AC=4,J则AC边上的高为序学号2754205^(B)1.A.B基B. 2C.[解析]由余弦定理,可得cos[解析]由余弦定理,可得cosA=AC2+AB2-BC22AC・AB42+32—JT322X3X41所以sinA=卒.乙 乙则AC边上的高h=ABsinA=3XF=34,故选B.乙 乙.在^ABC中,三边长AB=7,BC=5,AC=6,则砧•就等于|导学号42+32—JT322X3X41所以sinA=卒.乙 乙则AC边上的高h=ABsinA=3XF=34,故选B.乙 乙.在^ABC中,三边长AB=7,BC=5,AC=6,则砧•就等于|导学号275420581(D)A.19B.—14C.—18D.—19[解析]在4ABC中,AB=7,BC=5,AC=6,49+25—3619则cos=2X5X7=35'又AB•夜=|AB|・|就|cos(n-B)=一|AB|・|BC|cosB19=—7X5X—=—19.35.若^ABC的内角A、B、C所对的边a、b、c满足(a+b)2—C2=4,且NC=60,则ab的值为导学号27542059(A)4A.-3B.8-4--;3—a,C.1D.[解析]V(a+b)2—c2=4,Z.a2+b2—C2=4—2ab.又VNC=60°,由余弦定理,得即a2+b2—C2=ab.4.•.4—2ab=ab,则Uab=鼻.3cos60a+b2一c22ab,.AABC的三内角A、B、C所对边的长分别为a、b、c,设向量p=(a+c,b),c-a),若p〃q,则C的大小为导学号27542060(B)nA.-B.q=(bnc-C.2D.2nTp〃q,[解析]*/p=(a+c,b),q=(b—a,cp〃q,...(a+c)(c—a)—b(b—a)=0,即a2+b2—c2=ab.a2+b2-c2ab1由余弦定理,得cosC=20^=20b=2,二、填空题5.(2015•重庆文,13)设AABC的内角A、B、C的对边分别为a、b、5且a=2,cosC=-1,3sinA=2sinB,贝c=4.|导学号27542061[解析]・・・3sinA=2sinB,・・.3a=2b,又,.・a=2,,・.b=3.由余弦定理,得C2=a2+b2-2abcosC,;.C2=22+32-2X2X3X(-4)=16,Ac=4.6.如图,在AABC中,NBAC=120°,AB=2,AC=1,D是边BC上一点,DC=2BD,贝ij导学号27542062[解析]由余弦定理,得[解析]由余弦定理,得BC2=22+12-2X2X1X(-1)=7,ABC=-v'7,乙・cosB="鼻=眸2X2X\:7 14.> /—>„>、„>—>„>„>・・・AD-BC=(AB+BD)・BC=AB-BC+BD-BCM-ZX',"X*+^37X-..7X1=-|.三、解答题.如图,在AABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.导学号27542063[解析]在4ADC中,AD=10,AC=14,DC=6,由余弦定理,得cosZADC由余弦定理,得cosZADC=AD2+DC2-AC22AD・DC100+36-196 1——2X10X6—2,即NADC=120°,NADB=60°.在4ABD中,AD=10,B=45°,ZADB=60°,由正弦定理,得示ABADZADB=sinB由正弦定理,得示ABADZADB=sinB,于是AB=AD*sinZADB10sin60°sinBsin45°10X,g_ITf’62.在^ABC中,已知1ga-lgc=lgsinB=-lg亚,且B为锐角,试判断^ABC的形状.导学号27542064[解析]由lgsinB=—lg\,12=lg4^,可得sinB=*.乙 乙又B为锐角,所以B=45°.由lga—lgc=—1g\:2,得a=卑,c2所以c=\'2a.又因为b2=a2+C2—2accosB, 所以b2=a2+2a2—2\2a2X^—=a2.乙所以a=b,即A=B.又B=45°,所以^ABC为等腰直角三角形.A9.已知A、B、C为^ABC的二个内角,其所对的边分别为a、b、c,且2cos25+cosA乙=0.|导学号27542065(1)求角A的大小;(2)若a=2\'3,b=2,求c的值.A[解析]

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论