




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省淄博市稷下街道中学高一数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列幂函数中过点(0,0),(1,1)的偶函数是A.
B.
C.
D.参考答案:C略2.在平面坐标系中,直线与圆相交于,(在第一象限)两个不同的点,且则的值是(
) A.
B.
C.
D.参考答案:A略3.在平行四边形ABCD中,A(5,﹣1),B(﹣1,7),C(1,2),则D的坐标是()A.(7,﹣6) B.(7,6) C.(6,7) D.(﹣7,6)参考答案:A【考点】平面向量的坐标运算.【分析】根据平行四边形的对边平行且相等,得出向量则=,列出方程求出D点的坐标【解答】解:?ABCD中,A(5,﹣1),B(﹣1,7),C(1,2),设D点的坐标为(x,y),则=,∴(﹣6,8)=(1﹣x,2﹣y),∴,解得x=7,y=﹣6;∴点D的坐标为(7,﹣6).故选:A【点评】本题考查了向量相等的概念与应用问题,是基础题目.4.已知角θ的终边与单位圆的一个交点为,则的值是
(
)A.
B.
C.
D.参考答案:D略5.的值是(
)
参考答案:D6.设,则使幂函数为奇函数且在上单调递增的a值的个数为
A.
3
B.4
C.
5
D.6参考答案:A略7.已知集合,且,则实数的取值范围是(
)A. B. C. D.参考答案:D略8.已知,则数列的前项和为
A.
B.
C.
D.参考答案:A9.已知符号函数sgnx=,f(x)是R上的增函数,g(x)=f(x)﹣f(ax)(a>1),则()A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnx C.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]参考答案:B【考点】函数与方程的综合运用.【分析】直接利用特殊法,设出函数f(x),以及a的值,判断选项即可.【解答】解:由于本题是选择题,可以采用特殊法,符号函数sgnx=,f(x)是R上的增函数,g(x)=f(x)﹣f(ax)(a>1),不妨令f(x)=x,a=2,则g(x)=f(x)﹣f(ax)=﹣x,sgn[g(x)]=﹣sgnx.所以A不正确,B正确,sgn[f(x)]=sgnx,C不正确;D正确;对于D,令f(x)=x+1,a=2,则g(x)=f(x)﹣f(ax)=﹣x,sgn[f(x)]=sgn(x+1)=;sgn[g(x)]=sgn(﹣x)=,﹣sgn[f(x)]=﹣sgn(x+1)=;所以D不正确;故选:B.10.已知α∈(,π),sinα=,则tan(α+)等于(
)A、
B、7
C、-
D、-7参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.在等比数列中,,则该数列的前9项的和等于_____.
参考答案:13略12.已知函数,则f(x)的定义域为;当x=时,f(x)取最小值.参考答案:[﹣2,2];±2.【考点】函数的值域;函数的定义域及其求法.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】由题意得4﹣x2≥0,从而求函数的值域,再确定函数的最小值点.【解答】解:由题意得,4﹣x2≥0,解得,x∈[﹣2,2];当x=±2时,f(x)有最小值0;故答案为;[﹣2,2],±2.【点评】本题考查了函数的定义域的求法及函数的最值的确定.13.设函数,若对任意,都有成立,则的最小值为______.参考答案:2【分析】由题意可得,的最小值等于函数的半个周期,由此得到答案.【详解】由题意可得是函数的最小值,是函数的最大值,故的最小值等于函数的半个周期,为T?,故答案为2.14.设△ABC的内角A、B、C所对的边分别为a、b、c.已知,,如果解此三角形有且只有两个解,则x的取值范围是_____.参考答案:【分析】由余弦定理写出c与x的等式,再由有两个正解,解出x的取值范围【详解】根据余弦定理:代入数据并整理有,有且仅有两个解,记为则:【点睛】本题主要考查余弦定理以及韦达定理,属于中档题。15.在△ABC中,AB=,AC=1,B=30°,则△ABC的面积为
.参考答案:或16.不等式≥0的解集为.参考答案:(﹣2,1]【考点】其他不等式的解法.【分析】不等式≥0,即为,或,运用一次不等式的解法,计算即可得到所求解集.【解答】解:不等式≥0,即为:或,解得或,即有﹣2<x≤1或x∈?,则﹣2<x≤1.即解集为(﹣2,1].故答案为(﹣2,1].17.对于函数定义域中任意的,有如下结论:①;②;③;④;当时,上述结论中正确结论的序号是
(写出全部正确结论的序号)参考答案:①③④三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.正方体ABCD_A1B1C1D1,AA1=2,E为棱CC1的中点.(Ⅰ)求证:B1D1⊥AE;
(Ⅱ)求证:AC∥平面B1DE;(Ⅲ)求三棱锥A﹣BDE的体积.参考答案:【考点】直线与平面平行的判定;棱柱、棱锥、棱台的体积;直线与平面垂直的性质.【分析】(I)先证BD⊥面ACE,再利用线面垂直的性质,即可证得结论;(II)取BB1的中点F,连接AF、CF、EF,由E、F是CC1、BB1的中点,易得AF∥ED,CF∥B1E,从而可证平面ACF∥面B1DE.进而由面面平行的性质可得AC∥平面B1DE;(Ⅲ)三棱锥A﹣BDE的体积,即为三棱锥E﹣ABD的体积,根据正方体棱长为2,E为棱CC1的中点,代入棱锥体积公式,可得答案.【解答】证明:(1)连接BD,则BD∥B1D1,∵ABCD是正方形,∴AC⊥BD.∵CE⊥面ABCD,∴CE⊥BD.又AC∩CE=C,∴BD⊥面ACE.∵AE?面ACE,∴BD⊥AE,∴B1D1⊥AE.(2)取BB1的中点F,连接AF、CF、EF.∵E、F是CC1、BB1的中点,∴CE平行且等于B1F,∴四边形B1FCE是平行四边形,∴CF∥B1E,CF?平面B1DE,B1E?平面B1DE∴CF∥平面B1DE∵E,F是CC1、BB1的中点,∴EF平行且等于BC又BC平行且等于AD,∴EF平行且等于AD.∴四边形ADEF是平行四边形,∴AF∥ED,∵AF?平面B1DE,ED?平面B1DE∴AF∥平面B1DE∵AF∩CF=F,∴平面ACF∥平面B1DE.又∵AC?平面ACF∴AC∥平面B1DE;解:(Ⅲ)三棱锥A﹣BDE的体积,即为三棱锥E﹣ABD的体积∴V=??AD?AB?EC=??2?2?1=19.如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=,O为AC与BD的交点,E为棱PB上一点.(Ⅰ)证明:平面EAC⊥平面PBD;(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.参考答案:【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(Ⅰ)由已知得AC⊥PD,AC⊥BD,由此能证明平面EAC⊥平面PBD.(Ⅱ)由已知得PD∥OE,取AD中点H,连结BH,由此利用,能求出三棱锥P﹣EAD的体积.【解答】(Ⅰ)证明:∵PD⊥平面ABCD,AC?平面ABCD,∴AC⊥PD.∵四边形ABCD是菱形,∴AC⊥BD,又∵PD∩BD=D,AC⊥平面PBD.而AC?平面EAC,∴平面EAC⊥平面PBD.(Ⅱ)解:∵PD∥平面EAC,平面EAC∩平面PBD=OE,∴PD∥OE,∵O是BD中点,∴E是PB中点.取AD中点H,连结BH,∵四边形ABCD是菱形,∠BAD=60°,∴BH⊥AD,又BH⊥PD,AD∩PD=D,∴BD⊥平面PAD,.∴==.20..解不等式(1);(2).参考答案:(1);(2)或或.【分析】(1)移项通分,将分式不等式转化为二次不等式求解即可;(2)将不等式转化为,进而可得解.【详解】(1),所以,解集:.(2)或或.解集为或或.21..
参考答案:略22.设函数.
(1)求它的定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第6课 隋唐时期的中外文化交流说课稿 2024-2025学年统编版七年级历史下册
- 蒸汽安全使用培训课件
- 2025水果采购合同
- 2025汽车租赁合同简易模板
- 草业基础知识考试试题及答案
- 葡萄酒品尝知识培训心得
- 2025年九年级数学秋季开学摸底考02(广东专用)含答案
- 2024译林版八年级英语上册Unit2 单元测试卷及答案(含两套题)
- 著作权合理使用课件
- 2025年癌症护理考试题库及答案
- 中国书法史课件
- 创伤性休克的急救护理
- 《古文观止 上下 》读书笔记思维导图PPT模板下载
- YC/T 210.2-2006烟叶代码第2部分:烟叶形态代码
- GB/T 22000-2006食品安全管理体系食品链中各类组织的要求
- 哈尔滨工业大学机械课程机器人技术课程大作业
- 电子工业出版社小学-信息技术-第五册-5年级-上册-全册课件
- (施工方案)二期混凝土施工方案
- 钢结构简支梁强度、刚度及稳定性计算习题集
- 课堂因“融错·容错·溶措”而精彩
- 《简爱》课本剧剧本
评论
0/150
提交评论