




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省衢州市大桥中学2022-2023学年高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设随机变量X服从正态分布N(0,1),P(X>1)=p,则P(-1<X<0)等于
A.
B.1-
C.1-2
D.参考答案:D2.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()A.若K2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系;那么在100个吸烟的人中必有99人患有肺病B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推判出现错误D.以上三种说法都不正确参考答案:C【考点】独立性检验的应用.【分析】由独立性检验知,概率值是指我们认为我的下的结论正确的概率,从而对四个命题判断.【解答】解:若K2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系;而不是在100个吸烟的人中必有99人患有肺病,故不正确;从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,是指吸烟与患肺病有关系的概率,而不是吸烟人就有99%的可能患有肺病,故不正确;若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推判出现错误,正确;故选C.3.要得到函数的图象,只需将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度参考答案:C【考点】函数y=Asin(ωx+φ)的图象变换.【分析】把化为,故把的图象向左平移个单位,即得函数y=cos2x的图象.【解答】解:=,故把的图象向左平移个单位,即得函数的图象,即得到函数的图象.故选C.【点评】本题考查诱导公式,以及y=Asin(ωx+?)图象的变换,把两个函数化为同名函数是解题的关键.4.等差数列{an}中,a7+a9=16,a4=1,则a12=(
)A.15 B.30 C.31 D.64参考答案:A【考点】等差数列的性质.【专题】计算题;等差数列与等比数列.【分析】由a7+a9=16可得2a1+14d=16,再由a4=1=a1+3d,解方程求得a1和公差d的值,从而求得a12的值.【解答】解:设公差等于d,由a7+a9=16可得2a1+14d=16,即a1+7d=8.再由a4=1=a1+3d,可得a1=﹣,d=.故a12=a1+11d=﹣+=15,故选:A.【点评】本题主要考查等差数列的等差数列的通项公式的应用,求出首项和公差d的值,是解题的关键,属于基础题.5.极坐标和参数方程(为参数)所表示的图形分别是A.直线、圆
B.直线、椭圆
C.圆、圆
D.圆、椭圆参考答案:D6.如果一个几何体的三视图如右图所示(单位长度:cm),则此几何体的体积是(
)A.
B.
C.
D.
参考答案:D略7.不等式ax2+bx+2>0的解集是,则a-b等于A.-4
B.14
C.-10
D.10参考答案:C8.i是虚数单位,复数(
)A. B. C. D.参考答案:A【分析】根据复数的运算,即可求解,得到答案.【详解】由题意,根据复数的运算可得,故选A.【点睛】本题主要考查了复数的除法运算,其中解答中熟记复数的运算法则是解答的关键,着重考查了运算与求解能力,属于基础题.9.已知二次函数的图象如图所示,则它与轴所围图形的面积为A.
B.C.
D.参考答案:B10.给出下列四个关系式:①
②
③
④其中正确的个数为(
)A.1个 B.2个 C.3个 D.4个参考答案:C【分析】①根据阶乘公式判断.②根据排列数公式判断③根据排列数公式判断.④根据排列数公式判断.【详解】①因为,故正确.②,故正确.③,正确.④因为,所以,故不正确.故选:C【点睛】本题主要考查阶乘公式和排列数公式,还考查了理解辨析的能力,属于基础题.
二、填空题:本大题共7小题,每小题4分,共28分11.若复数z1,z2满足|z1|=2,|z2|=3,3z1﹣2z2=,则z1?z2=
.参考答案:【考点】A5:复数代数形式的乘除运算.【分析】由|z1|=2,|z2|=3,可得=4,=9,将其代入3z1﹣2z2进行整理化简出z1z2,再将3z1﹣2z2=代入即可.【解答】解:由3z1﹣2z2==可得=.故答案为.【点评】本题考查了共轭复数的性质,,本题也可设三角形式进行运算,计算过程有一定的技巧.12.设f(x)=ax2+bx,且1≤f(﹣1)≤2,2≤f(1)≤4,则f(﹣2)的取值范围用区间表示为.参考答案:[6,10]考点:二次函数的性质.专题:不等式的解法及应用.分析:由条件,可得f(﹣2)=4a﹣2b=2﹣,由此可得结论.解答:解:由f(x)=ax2+bx得f(﹣1)=a﹣b①;f(1)=a+b②由①+②得2a=,由②﹣①得2b=从而f(﹣2)=4a﹣2b=2﹣=3f(﹣1)+f(1)∵1≤f(一1)≤2,3≤f(1)≤4∴3×1+3≤3f(﹣1)+f(1)≤3×2+4∴6≤3f(﹣1)+f(1)≤10∴f(﹣2)的取值范围是:6≤f(﹣2)≤10,即f(﹣2)的取值范围是故答案为:[6,10].点评:本题考查取值范围的确定,考查学生分析解决问题的能力,属于中档题.13.正方体的内切球与外接球的表面积的比为
.参考答案:【考点】球的体积和表面积.【专题】计算题.【分析】正方体的内切球的直径为正方体的棱长,外接球的直径为正方体的对角线长,设出正方体的棱长,即可求出两个半径,求出两个球的面积之比.【解答】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为2a,半径为:a,正方体的内切球与外接球的面积之比:==.故答案为:.【点评】本题是基础题,考查正方体的外接球与内切球的面积之比,求出外接球的半径,是解决本题的关键.14.已知函数,(其中).对于不相等的实数,设m=,n=.现有如下命题:①对于任意不相等的实数,都有;②对于任意的a及任意不相等的实数,都有;③对于任意的a,存在不相等的实数,使得;④对于任意的a,存在不相等的实数,使得.其中真命题有___________(写出所有真命题的序号).参考答案:①④
因为在上是单调递增的,所以对于不相等的实数,恒成立,①正确;因为,所以=,正负不定,②错误;由,整理得.令函数,则,令,则,又,,从而存在,使得,于是有极小值,所以存在,使得,此时在上单调递增,故不存在不相等的实数,使得,不满足题意,③错误;由得,即,设,则,所以在上单调递增的,且当时,,当时,,所以对于任意的,与的图象一定有交点,④正确.15.已知三条线段的大小关系为:,若这三条线段能构成钝角三角形,则的取值范围为_______________.参考答案:略16.已知命题,,则是_____________________参考答案:17.给出下列四个命题:
①若,则;
②若,则;
③若正整数和满足:,则;④若,且,则;
其中真命题的序号是
.参考答案:②③略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.参考答案:【考点】MI:直线与平面所成的角;LS:直线与平面平行的判定.【分析】(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG=,再由已知得AM∥BC,且AM=BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面PAB;法二、证明MN∥平面PAB,转化为证明平面NEM∥平面PAB,在△PAC中,过N作NE⊥AC,垂足为E,连接ME,由已知PA⊥底面ABCD,可得PA∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,则结论得证;(2)连接CM,证得CM⊥AD,进一步得到平面PNM⊥平面PAD,在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.【解答】(1)证明:法一、如图,取PB中点G,连接AG,NG,∵N为PC的中点,∴NG∥BC,且NG=,又AM=,BC=4,且AD∥BC,∴AM∥BC,且AM=BC,则NG∥AM,且NG=AM,∴四边形AMNG为平行四边形,则NM∥AG,∵AG?平面PAB,NM?平面PAB,∴MN∥平面PAB;法二、在△PAC中,过N作NE⊥AC,垂足为E,连接ME,在△ABC中,由已知AB=AC=3,BC=4,得cos∠ACB=,∵AD∥BC,∴cos,则sin∠EAM=,在△EAM中,∵AM=,AE=,由余弦定理得:EM==,∴cos∠AEM=,而在△ABC中,cos∠BAC=,∴cos∠AEM=cos∠BAC,即∠AEM=∠BAC,∴AB∥EM,则EM∥平面PAB.由PA⊥底面ABCD,得PA⊥AC,又NE⊥AC,∴NE∥PA,则NE∥平面PAB.∵NE∩EM=E,∴平面NEM∥平面PAB,则MN∥平面PAB;(2)解:在△AMC中,由AM=2,AC=3,cos∠MAC=,得CM2=AC2+AM2﹣2AC?AM?cos∠MAC=.∴AM2+MC2=AC2,则AM⊥MC,∵PA⊥底面ABCD,PA?平面PAD,∴平面ABCD⊥平面PAD,且平面ABCD∩平面PAD=AD,∴CM⊥平面PAD,则平面PNM⊥平面PAD.在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.在Rt△PAC中,由N是PC的中点,得AN==,在Rt△PAM中,由PA?AM=PM?AF,得AF=,∴sin.∴直线AN与平面PMN所成角的正弦值为.19.如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明:AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.参考答案:【考点】直线与平面所成的角;空间中直线与直线之间的位置关系.【分析】(Ⅰ)取AB中点,连接OC,OA1,得出OC⊥AB,OA1⊥AB,运用AB⊥平面OCA1,即可证明.(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向建立坐标系,可向量的坐标,求出平面BB1C1C的法向量,代入向量夹角公式,可得答案.【解答】(Ⅰ)证明:取AB中点,连接OC,OA1,∵CA=CB,AB=A1A,∠BAA1=60°∴OC⊥AB,OA1⊥AB,∵OC∩OA1=O,∴AB⊥平面OCA1,∵CA1?平面OCA1,∴AB⊥A1C;(Ⅱ)解:由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),==(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,可取y=1,可得=(,1,﹣1),故cos<,>=﹣,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.20.已知函数f(x)=lnx+ax2.(Ⅰ)记m(x)=f′(x),若m′(1)=3,求实数a的值;(Ⅱ已知函数g(x)=f(x)﹣ax2+ax,若g(x)在(0,+∞)上单调递增,求实数a的取值范围.参考答案:【考点】利用导数研究函数的单调性;导数的运算.【分析】(Ⅰ)求出m(x),计算m′(1),从而求出a的值即可;(Ⅱ)求出函数g(x)的导数,问题转化为a≥﹣在(0,+∞)成立,求出a的范围即可.【解答】解:(Ⅰ)m(x)=+2ax,m′(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030中国皮肤美容产品行业市场深度研究与战略咨询分析报告
- 2025至2030中国电线电缆卷盘行业市场深度研究与战略咨询分析报告
- 2025至2030中国甲醛(案例50000)行业产业运行态势及投资规划深度研究报告
- 中学教师招聘试题及答案
- 安吉游戏研究与教育实践心得体会
- 初中法治课案例教学计划
- 幼儿园教学质量监督工作计划
- 函授本科小学教育学校管理探讨毕业论文范文
- 大学志愿活动总结模板
- 七年级生物课堂备课组协同计划
- FX5U可编程序控制系统设计技术 课件 任务23 PLC与变频器专用通信协议监控系统设计与调试
- 商场消防免责协议书
- 江苏省淮安市小升初择校分班考押题卷试题-2023-2024学年六年级下册数学 苏教版
- 《对越南的PEST分析》课件
- 采购控制精细化管理制度
- 餐饮金牌店长培训
- 地球自转考试题型及答案
- 老年人同居协议书8篇
- 税务系统预防职务犯罪警示教育课演讲稿
- 2025年度保密承诺书军队项目专用版
- 留置针穿刺培训
评论
0/150
提交评论