




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【常考题】初三数学上期末试题带答案一、选择题1.已知的图象如图,则和的图象为()A. B. C. D.2.如图,Rt△ABC中,∠ABC=90°,AB=8cm,BC=6cm,分别以A、C为圆心,以的长为半径作圆,将Rt△ABC截去两个扇形,则剩余(阴影)部分面积为()A.(24−)cm2 B.cm2C.(24−)cm2 D.(24−)cm23.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数为()A.25° B.30° C.50° D.55°4.如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()A.6 B.8 C.10 D.125.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.大漠孤烟直D.手可摘星辰6.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.4 B.6 C.2 D.87.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件8.以为根的一元二次方程可能是()A. B. C. D.9.若(b≠0),则=()A.0 B. C.0或 D.1或210.二次函数y=3(x–2)2–5与y轴交点坐标为()A.(0,2) B.(0,–5) C.(0,7) D.(0,3)11.如图,AB为⊙O的直径,四边形ABCD为⊙O的内接四边形,点P在BA的延长线上,PD与⊙O相切,D为切点,若∠BCD=125°,则∠ADP的大小为()A.25° B.40° C.35° D.30°12.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F.P是⊙A上一点,且∠EPF=40°,则图中阴影部分的面积是()A.4- B.4- C.8- D.8-二、填空题13.已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.14.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).15.如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为.16.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是_____.17.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于______.18.若点A(-3,y1)、B(0,y2)是二次函数y=-2(x-1)2+3图象上的两点,那么y1与y2的大小关系是________(填y1>y2、y1=y2或y1<y2).19.已知二次函数y=kx2﹣6x﹣9的图象与x轴有两个不同的交点,求k的取值范围_____.20.已知扇形的面积为12πcm2,半径为12cm,则该扇形的圆心角是_______.三、解答题21.如图,是的直径,是上半圆的弦,过点作的切线交的延长线于点,过点作切线的垂线,垂足为,且与交于点,设,的度数分别是.用含的代数式表示,并直接写出的取值范围;连接与交于点,当点是的中点时,求的值.22.如图,四边形ACDE是证明勾股定理时用到的一个图形,a、b、c是RtABC和RtBED的边长,已知,这时我们把关于x的形如二次方程称为“勾系一元二次方程”.请解决下列问题:(1)写出一个“勾系一元二次方程”;(2)求证:关于x的“勾系一元二次方程”,必有实数根;(3)若x1是“勾系一元二次方程”的一个根,且四边形ACDE的周长是6,求ABC的面积.23.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对《三国演义》、《红楼梦》、《西游记》、《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.24.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.25.如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE(1)求∠DCE的度数;(2)若AB=4,CD=3AD,求DE的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据二次函数y=ax2+bx+c(a≠0)的图象可以得到a<0,b>0,c<0,由此可以判定y=ax+b经过一、二、四象限,双曲线在二、四象限.【详解】根据二次函数y=ax2+bx+c(a≠0)的图象,可得a<0,b>0,c<0,∴y=ax+b过一、二、四象限,双曲线在二、四象限,∴C是正确的.故选C.【点睛】此题考查一次函数,二次函数,反比例函数中系数及常数项与图象位置之间关系.2.A解析:A【解析】【分析】利用勾股定理得出AC的长,再利用图中阴影部分的面积=S△ABC−S扇形面积求出即可.【详解】解:在Rt△ABC中,∠ABC=90°,AB=8cm,BC=6cm,∴cm,则=5cm,∴S阴影部分=S△ABC−S扇形面积=(cm2),故选:A.【点睛】本题考查了扇形的面积公式,阴影部分的面积可以看作是Rt△ABC的面积减去两个扇形的面积.求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.3.C解析:C【解析】试题解析:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.4.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.5.D解析:D【解析】【分析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.A解析:A【解析】【分析】【详解】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=OC=2,∴AC=2CD=4.故选A.【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.7.D解析:D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D.考点:随机事件.8.A解析:A【解析】【分析】根据一元二次方程根与系数的关系求解即可.【详解】设x1,x2是一元二次方程的两个根,∵∴x1+x2=3,x1∙x2=-c,∴该一元二次方程为:,即故选A.【点睛】此题主要考查了根据一元二次方程的根与系数的关系列一元二次方程.9.C解析:C【解析】【分析】【详解】解:∵,∴a(a-b)=0,∴a=0,b=a.当a=0时,原式=0;当b=a时,原式=故选C10.C解析:C【解析】【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.11.C解析:C【解析】【分析】连接AC,OD,根据直径所对的圆周角是直角得到∠ACB是直角,求出∠ACD的度数,根据圆周角定理求出∠AOD的度数,再利用切线的性质即可得到∠ADP的度数.【详解】连接AC,OD.∵AB是直径,∴∠ACB=90°,∴∠ACD=125°﹣90°=35°,∴∠AOD=2∠ACD=70°.∵OA=OD,∴∠OAD=∠ADO,∴∠ADO=55°.∵PD与⊙O相切,∴OD⊥PD,∴∠ADP=90°﹣∠ADO=90°﹣55°=35°.故选:C.【点睛】本题考查了切线的性质、圆周角定理及推论,正确作出辅助线是解答本题的关键.12.B解析:B【解析】试题解析:连接AD,∵BC是切线,点D是切点,∴AD⊥BC,∴∠EAF=2∠EPF=80°,∴S扇形AEF=,S△ABC=AD•BC=×2×4=4,∴S阴影部分=S△ABC-S扇形AEF=4-π.二、填空题13.5【解析】试题解析:∵在△AOB中∠AOB=90°AO=3cmBO=4cm∴AB==5cm∵点D为AB的中点∴OD=AB=25cm∵将△AOB绕顶点O按顺时针方向旋转到△A1OB1处∴OB1=OB=解析:5【解析】试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==5cm,∵点D为AB的中点,∴OD=AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.故答案为1.5.14.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.15.【解析】试题分析:根据圆的确定先做出过ABC三点的外接圆从而得出答案如图分别作ABBC的中垂线两直线的交点为O以O为圆心OA为半径作圆则⊙O即为过ABC三点的外接圆由图可知⊙O还经过点DEFGH这5解析:【解析】试题分析:根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为5.考点:圆的有关性质.16.-3<x<1【解析】试题分析:根据抛物线的对称轴为x=﹣1一个交点为(10)可推出另一交点为(﹣30)结合图象求出y>0时x的范围解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1已知一个交点为(1解析:-3<x<1【解析】试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为﹣3<x<1.考点:二次函数的图象.17.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面解析:16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积,依此列式计算即可.【详解】解:如图.2+2=4,恒星的面积=4×4-4π=16-4π.故答案为16-4π.【点睛】本题考查了扇形面积的计算,关键是理解恒星的面积=边长为4的正方形面积-半径为2的圆的面积.18.y1<y2【解析】试题分析:根据题意可知二次函数的对称轴为x=1由a=-2可知当x>1时y随x增大而减小当x<1时y随x增大而增大因此由-3<0<1可知y1<y2故答案为y1<y2点睛:此题主要考查解析:y1<y2【解析】试题分析:根据题意可知二次函数的对称轴为x=1,由a=-2,可知当x>1时,y随x增大而减小,当x<1时,y随x增大而增大,因此由-3<0<1,可知y1<y2.故答案为y1<y2.点睛:此题主要考查了二次函数的图像与性质,解题关键是求出其对称轴,然后根据对称轴和a的值判断其增减性,然后可判断.19.k>﹣1且k≠0【解析】【分析】根据函数与方程的关系求出根的判别式的符号根据△>0建立关于的不等式通过解不等式即可求得的取值范围【详解】令y=0则kx2﹣6x﹣9=0∵二次函数y=kx2﹣6x﹣9的解析:k>﹣1且k≠0.【解析】【分析】根据函数与方程的关系,求出根的判别式的符号,根据△>0建立关于的不等式,通过解不等式即可求得的取值范围.【详解】令y=0,则kx2﹣6x﹣9=0.∵二次函数y=kx2﹣6x﹣9的图象与x轴有两个不同的交点,∴一元二次方程kx2﹣6x﹣9=0有两个不相等的解,,解得:k>﹣1且k≠0.故答案是:k>﹣1且k≠0.【点睛】本题考查了一元二次方程与函数的关系,函数与轴的交点的横坐标就是方程的根,若函数与轴有交点说明方程有根,两者互相转化,要充分运用这一点来解题..20.30°【解析】设圆心角为n°由题意得:=12π解得:n=30故答案为30°解析:30°【解析】设圆心角为n°,由题意得:=12π,解得:n=30,故答案为30°.三、解答题21.(1)β=90°-2α(0°<α<45°);(2)α=β=30°【解析】【分析】(1)首先证明,在中,根据两锐角互余,可知;(2)连接OF交AC于O′,连接CF,只要证明四边形AFCO是菱形,推出是等边三角形即可解决问题.【详解】解:(1)连接OC.∵DE是⊙O的切线,∴OC⊥DE,∵AD⊥DE,∴AD∥OC,∴∠DAC=∠ACO,∵OA=OC,∴∠OCA=∠OAC,∴∠DAE=2α,∵∠D=90°,∴∠DAE+∠E=90°,∴2α+β=90°∴β=90°-2α(0°<α<45°).(2)连接OF交AC于O′,连接CF.∵AO′=CO′,∴AC⊥OF,∴FA=FC,∴∠FAC=∠FCA=∠CAO,∴CF∥OA,∵AF∥OC,∴四边形AFCO是平行四边形,∵OA=OC,∴四边形AFCO是菱形,∴AF=AO=OF,∴△AOF是等边三角形,∴∠FAO=2α=60°,∴α=30°,∵2α+β=90°,∴β=30°,∴α=β=30°.【点睛】本题考查了圆和三角形的问题,掌握圆的切线的性质以及等边三角形的性质和证明是解题的关键.22.(1)(答案不唯一)(2)见解析(3)1.【解析】【分析】(1)直接找一组勾股数代入方程即可;(2)根据根的判别式即可求解;(3)根据方程的解代入求出a,b,c的关系,再根据完全平方公式的变形进行求解.【详解】(1)当a=3,b=4,c=5时,勾系一元二次方程为;(2)依题意得△=()2-4ab=2c2-4ab,∵a2+b2=c2,∴2c2-4ab=2(a2+b2)-4ab=2(a-b)2≥0,即△≥0,故方程必有实数根;(3)把x=-1代入得a+b=c∵四边形ACDE的周长是6,即2(a+b)+c=6,故得到c=2,∴a2+b2=4,a+b=2∵(a+b)2=a2+b2+2ab∴ab=2,故ABC的面积为ab=1.【点睛】此题主要考查一元二次方程的应用,解题的关键是熟知勾股定理、根的判别式及完全平方公式的应用.23.(1)50;(2)见解析;(3).【解析】【分析】(1)本次一共调查:15÷30%;(2)先求出B对应的人数为:50﹣16﹣15﹣7,再画图;(3)先列表,再计算概率.【详解】(1)本次一共调查:15÷30%=50(人);故答案为50;(2)B对应的人数为:50﹣16﹣15﹣7=12,如图所示:(3)列表:ABCDAABACADBBABCBDCCACBCDDDADBDC∵共有12种等可能的结果,恰好选中A、B的有2种,∴P(选中A、B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年教师招聘之《小学教师招聘》题库必刷100题附答案详解【模拟题】
- 量子精密测量在地质勘探中的创新创业项目商业计划书
- 2025年教师招聘之《幼儿教师招聘》模拟题库及一套答案详解
- 教师招聘之《小学教师招聘》能力提升打印大全及答案详解(基础+提升)
- 2025年教师招聘之《小学教师招聘》考前冲刺测试卷附完整答案详解【夺冠】
- 教师招聘之《小学教师招聘》题库【全优】附答案详解
- 教师招聘之《幼儿教师招聘》模拟考试高能及答案详解【名校卷】
- 教师招聘之《幼儿教师招聘》练习题库含答案详解【研优卷】
- 教师招聘之《幼儿教师招聘》试题(得分题)及参考答案详解(轻巧夺冠)
- 2025内蒙古呼和浩特清水河县面向全国招聘名校长、名优教师8人笔试备考试题及答案解析
- 毒蕈中毒健康教育课件
- DRG视角下护理管理
- 水电厂自动化管理制度
- 2025-2030中国同声传译市场深度调查及投资效益分析报告
- 2025至2030年中国红外热成像仪产业发展态势及投资决策建议报告
- 第五代移动通信设备安装工程造价编制指导意见信息通信建设工程费用定额信息通信建设工程概预算编制规程-2024
- 密集场所安全管理制度
- 休克分类与护理要点
- 特殊教育理论试题及答案
- DOE考试试题及答案
- 继电保护初级工测试题(含参考答案)
评论
0/150
提交评论