2021年福建省宁德市西洋中学高二数学文测试题含解析_第1页
2021年福建省宁德市西洋中学高二数学文测试题含解析_第2页
2021年福建省宁德市西洋中学高二数学文测试题含解析_第3页
2021年福建省宁德市西洋中学高二数学文测试题含解析_第4页
2021年福建省宁德市西洋中学高二数学文测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年福建省宁德市西洋中学高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖”。四位歌手的话只有两名是对的,则获奖的歌手是()A.甲B.乙C.丙D.丁参考答案:C2.已知数列的首项,且,则为(

A.7

B.15

C.30

D.31参考答案:D3.下列命题为真命题的是()A.若,则B.若,则C.若,则

D.若,则

参考答案:D4.个连续自然数按规律排列如下:

根据规律,从2011到2013箭头方向依次是(

)A.↓→

B.→↑

C.↑→

D.→↓参考答案:D略5.已知椭圆上的一点到椭圆一个焦点的距离为,则到另一焦点距离为(

)A.

B.

C.

D.

参考答案:D

解析:点到椭圆的两个焦点的距离之和为6.函数y=sin(2x+)的图象可看成是把函数y=sin2x的图象做以下平移得到(

A.向右平移

B.向左平移

C.向右平移

D.向左平移

参考答案:B略7.,,,则

)A.45

B.50

C.55

D.60参考答案:D8.过点P(0,﹣1)的直线与抛物线x2=﹣2y公共点的个数为()A.0 B.1 C.2 D.1或2参考答案:D【考点】抛物线的简单性质.【分析】由抛物线的性质,当直线为y轴时,直线与抛物线x2=﹣2y有一个交点,当过P且直线的斜率存在时,直线与抛物线x2=﹣2y有两个公共点.【解答】解:由题意可知:P在抛物线x2=﹣2y内部,当直线为y轴时,直线与抛物线x2=﹣2y有一个交点,当过P且直线的斜率存在时,直线与抛物线x2=﹣2y有两个公共点,故选:D.9.直线y=x﹣3与抛物线y2=4x交于A、B两点,过A、B两点向抛物线的准线作垂线,垂足分别为P、Q,则梯形APQB的面积为()A.48 B.56 C.64 D.72参考答案:A【考点】直线与圆锥曲线的综合问题.【专题】计算题.【分析】依题意联立方程组消去y,进而求得交点的坐标,进而根据|AP|,|BQ|和|PQ|的值求得梯形APQB的面积【解答】解:直线y=x﹣3与抛物线y2=4x交于A,B两点,过A,B两点向抛物线的准线作垂线,垂足分别为P,Q,联立方程组得,消元得x2﹣10x+9=0,解得,和,∴|AP|=10,|BQ|=2,|PQ|=8,梯形APQB的面积为48,故选A.【点评】本题主要考查了抛物线与直线的关系.常需要把直线与抛物线方程联立根据韦达定理找到解决问题的途径.10.已知a,b,m∈R,则下面推理中正确的是(

A.a>b

B.

C.

D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.如图,在三棱锥D﹣ABC中,已知AB=2,?=﹣3,设AD=a,BC=b,CD=c,则的最小值为

.参考答案:2【考点】M6:空间向量的数量积运算.【分析】由已知得=,=,从而由=()?()=﹣3,得|()﹣|=2,从而=,由此入手能求出的最小值.【解答】解:∵在三棱锥D﹣ABC中,AB=2,?=﹣3,设=,=,=∴=,=,∴=()?()==﹣3,∴=+﹣+3,又==,∴|()﹣|=2,①∴=,②将①两边平方得,∴,∴,代入②中,得=,∴=+1+==1+(),∴,又=c2,,,∴=≥=2.∴的最小值为2.故答案为:2.【点评】本题考查三角形中关于边长的代数式的最小值的求法,是中档题,解题时要认真审题,注意向量知识的合理运用.12.“且”是“”成立的______________条件.(填充分不必要,必要不充分,充要条件或既不充分也不必要)参考答案:充分不必要略13.动圆M过点(3,2)且与直线y=1相切,则动圆圆心M的轨迹方程为.参考答案:x2﹣6x﹣2y+12=0【考点】轨迹方程.【分析】设出圆的坐标,利用已知条件列出方程求解即可.【解答】解:设动圆圆心M(x,y),动圆M过点(3,2)且与直线y=1相切,可得:,化简可得x2﹣6x﹣2y+12=0.则动圆圆心M的轨迹方程为:x2﹣6x﹣2y+12=0.故答案为:x2﹣6x﹣2y+12=0.14.设一次试验成功的概率为,进行100次独立重复试验,当

时,成功次数的标准差最大,其最大值是

.参考答案:15.已知A={1,2,(a2-3a-1)+(a2-5a-6)i},B={-1,3},A∩B={3},则实数a的值为______.参考答案:略16.“”是“”的

条件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选择一个填空)参考答案:充分不必要

17.直线被圆截得的弦长=

.

参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分14分)某种产品的广告费用支出(千元)与销售额(10万元)之间有如下的对应数据:(Ⅰ)请画出上表数据的散点图;(Ⅱ)请根据上表提供的数据,用最小二乘法求出销售额关于费用支出的线性回归方程.(III)当广告费用支出1万元时,预测一下该商品的销售额为多少万元?(参考值:,)参考答案:(Ⅱ)∵,,,,∴,,故销售额关于费用支出的线性回归方程为(III)y=8.2519.已知数列{an}满足a1=1,an+1=2an+1(n∈N*).(I)求数列{an}的通项公式;(II)证明:.参考答案:【考点】数列与不等式的综合;数列递推式.【专题】计算题;证明题.【分析】(I)数列的递推公式求数列的通项公式,根据等比数列的定义,只要证明an+1+1=2(an+1),从而可求数列{an}的通项公式;(II)根据数列的通项公式得,再对其进行适当的放缩即可.【解答】解:(I)∵an+1=2an+1(n∈N*),∴an+1+1=2(an+1),∴{an+1}是以a1+1=2为首项,2为公比的等比数列.∴an+1=2n.即an=2n﹣1(n∈N*).(II)证明:∵,∴.∵,∴,∴.【点评】由数列的递推公式,通过构造新的等比数列求数列的通项公式,是常考知识点,特别注意新数列的首项,裂项求和是常考数列求和的方法,并通过放缩法证明不等式.此题非常好,很典型.20.(本小题12分)已知顶点在原点,焦点在轴上的抛物线过点.(1)求抛物线的标准方程;(2)若抛物线与直线交于、两点,求证:.参考答案:解:设抛物线的标准方程为:,因为抛物线过点,所以,解得,所以抛物线的标准方程为:.(2)设、两点的坐标分别为,由题意知:,

,消去得:,根据韦达定理知:,所以,

略21.已知椭圆C:+=1(a>b>0)的两个焦点分别为F1,F2,离心率为.设过点F2的直线l与椭圆C相交于不同两点A,B,周长为8.(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知点T(4,0),证明:当直线l变化时,总有TA与TB的斜率之和为定值.参考答案:【考点】KQ:圆锥曲线的定值问题;K3:椭圆的标准方程;KL:直线与椭圆的位置关系.【分析】(Ⅰ)由△MNF1的周长为8,得4a=8,由e=,求出c,可求得b;即可求解椭圆方程.(Ⅱ)分类讨论,当直线l不垂直与x轴时,设直线方程,代入椭圆方程,由韦达定理及直线的斜率公式,即可求得kTA+kTB=0,即可证明直线TA与TB的斜率之和为定值.【解答】解:(I)由题意知,4a=8,所以a=2.因为e=,所以c=1,则b=.所以椭圆C的方程为.(Ⅱ)证明:当直线l垂直与x轴时,显然直线TS与TR的斜率之和为0,当直线l不垂直与x轴时,设直线l的方程为y=k(x﹣1),A(x1,y1),B(x2,y2),,整理得:(3+4k2)x2﹣8k2x+4k2x+4k2﹣12=0,△=64k4﹣4(3+4k2)(4k2﹣12)=k2+1>0恒成立,x1+x2=,x1x2=,由kTA+kTB=+==,TA,TB的斜率存在,由A,B两点的直线y=k(x﹣1),故y1=k(x1﹣1),y2=k(x2﹣1),由2x1x2﹣5(x1+x2)+8==0,∴kTA+kTB=0,∴直线TA与TB的斜率之和为0,综上所述,直线TA与TB的斜率之和为定值,定值为0.22.(本小题满分12分)如图,在四棱锥中,,底面为平行四边形,平面.(Ⅰ)求证:平面;(Ⅱ)若,,,求三棱锥的体积;(Ⅲ)设平面平面直线,求证:.参考答案:(Ⅰ)证明:因为平面,平面,所以.

……1分又因为,,平面,平面,,所以,平面.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论