吉林省长春市光华学院附属中学2021-2022学年高二数学文联考试题含解析_第1页
吉林省长春市光华学院附属中学2021-2022学年高二数学文联考试题含解析_第2页
吉林省长春市光华学院附属中学2021-2022学年高二数学文联考试题含解析_第3页
吉林省长春市光华学院附属中学2021-2022学年高二数学文联考试题含解析_第4页
吉林省长春市光华学院附属中学2021-2022学年高二数学文联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春市光华学院附属中学2021-2022学年高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知f(x)=3x+1(x∈3x+1(x∈R),若|f(x)﹣4|<a的充分条件是|x﹣1|<b(a,b>0),则a,b之间的关系是()A.a B. C. D.参考答案:B【考点】必要条件、充分条件与充要条件的判断.【分析】由题意的|f(x)﹣4|=|3x﹣3|<a,即原不等式等价于|x﹣1|<.根据题意可得|x﹣1|<的充分条件是|x﹣1|<b,即|x﹣1|<b?|x﹣1|<,进而可得到答案.【解答】解:因为f(x)=3x+1(x∈R),所以|f(x)﹣4|=|3x﹣3|<a,即原不等式等价于|x﹣1|<.又因为|f(x)﹣4|<a的充分条件是|x﹣1|<b,所以|x﹣1|<的充分条件是|x﹣1|<b.即|x﹣1|<b?|x﹣1|<所以.故选B.2.已知等比数列中,各项都是正数,且,成等差数列,则(

)A.

B.

C. D.参考答案:C3.已知A(1,3)和直线:2x+3y-6=0,点B在上运动,点P是有向线段AB上的分点,且,则点P的轨迹方程是(

)A.6x-9y-28=0

B.6x-9y+28=0

C.6x+9y-28=0

D.6x+9y+28=0参考答案:C4.已知三个实数,,,则的大小关系正确的为(

)A、

B、

C、

D、参考答案:C略5.与椭圆共焦点且过点的双曲线方程是(

)A.B.C.

D.参考答案:A略6.已知两个平面垂直,下列命题中:①一个平面内已知直线必垂直于另一个平面内的任意一条直线;②一个平面内已知直线必垂直于另一个平面内的无数条直线;③一个平面内的任意一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.其中正确命题的个数有(

)A.1 B.2 C.3 D.4参考答案:B【考点】空间中直线与平面之间的位置关系.【专题】空间位置关系与距离.【分析】利用面面垂直的性质及空间中直线与直线、直线与平面的位置关系,对①、②、③、④四个选项逐一判断即可【解答】解:对于①,当两个平面垂直时,一个平面内的不垂直于交线的直线不垂直于另一个平面内的任意一条直线,故①错误;对于②,设平面α∩平面β=m,n?α,l?β,∵平面α⊥平面β,∴当l⊥m时,必有l⊥α,而n?α,∴l⊥n,而在平面β内与l平行的直线有无数条,这些直线均与n垂直,故一个平面内的已知直线必垂直于另一个平面内的无数条直线,即②正确;对于③,当两个平面垂直时,?一个平面内的任一条直线不垂直于另一个平面,故③错误;对于④,当两个平面垂直时,?过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面,这是面面垂直的性质定理,故④正确;故选B.【点评】本题考查命题的真假判断与应用,着重考查面面垂直的性质及空间中直线与直线、直线与平面的位置关系,考查空间想象能力,属于中档题7.若对于任意的实数x,有,则的值为()A.3 B.6 C.9 D.12参考答案:B试题分析:因为,所以,故选择B.考点:二项式定理.8.极坐标系中,由三条曲线围成的图形的面积是(

)A.

B.

C.

D.参考答案:A9.已知a∈R、b∈R且a2+b2=10,则a+b的取值范围是A.

B.

C.

D.参考答案:A10.以下是计算程序框图,请写出对应的程序参考答案:解:(Ⅰ)样本中男生人数为40,由分层出样比例为10%估计全校男生人数为400。(Ⅱ)由统计图知,样本中身高在170~185cm之间的学生有14+13+4+3+1=35人,样本容量为70人,所以样本中学生身高在170~185cm之间的频率故有估计该校学生身高在170~180cm之间的概率(Ⅲ)样本中身高在180~185cm之间的男生有4人,设其编号为①,②,③,④,样本中身高在185~190cm之间的男生有2人,设其编号为⑤,⑥,从上述6人中任取2人的树状图为:故从样本中身高在180~190cm之间的男生中任选2人得所有可能结果数为15,求至少有1人身高在185~190cm之间的可能结果数为9,因此,所求概率为

略二、填空题:本大题共7小题,每小题4分,共28分11.抛物线的焦点坐标是

.参考答案:.解析:原方程为,令,则,其焦点坐标为,∴抛物线的焦点坐标是.12.方程的实数解的个数为

.

参考答案:

2个

13.已知函数,则曲线在点处的切线方程_________参考答案:【分析】求得函数的导数,分别计算得,,再利用直线的点斜式方程,即可求解切线的方程,得到答案.【详解】由题意,函数,则,则,,所以曲线在处的切线方程为,即.【点睛】本题主要考查了利用导数的几何意义求解曲线在某点处的切线方程,其中解答中熟记导数的几何意义的应用,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.14.已知函数(为常数)。若在区间上是增函数,则的取值范围是

。参考答案:15.已知实数x,y满足的最小值为.参考答案:【考点】点到直线的距离公式.【专题】计算题.【分析】由题意得,所求的最小值就是原点到直线2x+y+5=0的距离.【解答】解:表示直线2x+y+5=0上的点与原点的距离,其最小值就是原点到直线2x+y+5=0的距离=,故答案为:.【点评】本题考查的意义,以及点到直线的距离公式的应用,其中明确表示直线2x+y+5=0上的点与原点的距离,是解决问题的关键.16.已知时,则

参考答案:17.点M(2,1)到直线的距离是

.参考答案:【考点】点到直线的距离公式.【专题】计算题.【分析】利用点到直线的距离公式即可求得答案.【解答】解:设点M(2,1)到直线l:x﹣y﹣2=0的距离为d,由点到直线的距离公式得:d==.故答案为:.【点评】本题考查点到直线的距离公式,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x2=8y的焦点.(1)求椭圆C的标准方程;(2)直线x=﹣2与椭圆交于P,Q两点,A,B是椭圆上位于直线x=﹣2两侧的动点.①若直线AB的斜率为,求四边形APBQ面积的最大值;②当动点A,B满足∠APQ=∠BPQ时,试问直线AB的斜率是否为定值,请说明理由.参考答案:【考点】椭圆的简单性质.【专题】综合题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】(1)设椭圆标准方程为(a>b>0),由已知得b=2,e==,由此能求出椭圆C的标准方程.(2)①先求出|PQ|=6,设直线AB的方程为,与联立,得x2+mx+m2﹣12=0,由此利用根的判别式、韦达定理、椭圆弦长公式,结合已知能求出四边形APBQ面积的最大值.②设PA斜率为k,则PB斜率为﹣k.分别设出PA的直线方程和PB的直线方程,分别与椭圆联立,能求出直线AB的斜率是为定值.【解答】解:(1)∵椭圆C的中心在原点,焦点在x轴上,∴设椭圆标准方程为(a>b>0),∵椭圆离心率等于,它的一个顶点恰好是抛物线x2=8y的焦点.焦点为,∴b=2…e==,a2+b2=c2,∴解得a2=16,b2=12∴椭圆C的标准方程.…(2)①直线x=﹣2与椭圆交点P(﹣2,3),Q(﹣2,﹣3)或P(﹣2,﹣3),Q(﹣2,3),∴|PQ|=6,…设A(x1,y1

),B(x2,y2),直线AB的方程为,与联立,得x2+mx+m2﹣12=0,由△=m2﹣4(m2﹣12)>0,得﹣4<m<4,由韦达定理得x1+x2=﹣m,,…由A,B两点位于直线x=﹣2两侧,得(x1+2)(x2+2)<0,即x1x2+2(x1+x2)+4<0∴m2﹣2m﹣8<0解得﹣2<m<4,…∴S=?|PQ|?|x1﹣x2|=?|PQ|?=3,∴当m=0时,S最大值为.…②当∠APQ=∠BPQ时直线PA,PB斜率之和为0.设PA斜率为k,则PB斜率为﹣k.当P(﹣2,3),Q(﹣2,﹣3)时,PA的直线方程为y﹣3=k(x+2)…与椭圆联立得(3+4k2)x2+8k(2k+3)x+4(2k+3)2﹣48=0∴;同理∴…y1﹣y2=k(x1+2)+3﹣[﹣k(x2+2)+3]直线AB斜率为…当P(﹣2,﹣3),Q(﹣2,3)时,同理可得直线AB斜率为.…【点评】本题考查椭圆标准方程的求法,考查四边形面积的最大值的求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、椭圆弦长公式的合理运用.19.已知函数f(x)=|x|+﹣1(x≠0).(1)当m=2时,判断f(x)在(﹣∞,0)的单调性,并用定义证明.(2)若对任意x∈R,不等式f(2x)>0恒成立,求m的取值范围;(3)讨论f(x)零点的个数.参考答案:【考点】函数恒成立问题;函数零点的判定定理;利用导数研究函数的单调性.【专题】函数的性质及应用.【分析】(1)当m=2时,利用函数单调性的定义即可判断f(x)在(﹣∞,0)的单调性,并用定义证明.(2)利用参数分离法将不等式f(2x)>0恒成立,进行转化,求m的取值范围;(3)根据函数的单调性和最值,即可得到结论.【解答】解:(1)当m=2,且x<0时,是单调递减的.证明:设x1<x2<0,则===又x1<x2<0,所以x2﹣x1>0,x1x2>0,所以所以f(x1)﹣f(x2)>0,即f(x1)>f(x2),故当m=2时,在(﹣∞,0)上单调递减的.(2)由f(2x)>0得,变形为(2x)2﹣2x+m>0,即m>2x﹣(2x)2而,当即x=﹣1时,所以.(3)由f(x)=0可得x|x|﹣x+m=0(x≠0),变为m=﹣x|x|+x(x≠0)令作y=g(x)的图象及直线y=m,由图象可得:当或时,f(x)有1个零点.当或m=0或时,f(x)有2个零点;当或时,f(x)有3个零点.【点评】本题主要考查函数单调性的判断,以及不等式恒成立问题的求解,利用参数分离法是解决不等式恒成立问题的基本方法.20.(12分)如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB,PC的中点。(1)求证:EF∥平面PAD;(2)求证:EF⊥CD;参考答案:连AC,设AC中点为O,连OF、OE(1)在△PAC中,∵F、O分别为PC、AC的中点

∴FO∥PA…………①在△ABC中,∵E、O分别为AB、AC的中点

∴EO∥BC,又

∵BC∥AD

∴EO∥AD…………②综合①、②可知:平面EFO∥平面PAD

∵EF?平面EFO

∴EF∥平面PAD.(2)在矩形ABCD中,∵EO∥BC,BC⊥CD∴EO⊥CD

又∵FO∥PA,PA⊥平面AC

∴FO⊥平面AC

∴EO为EF在平面AC内的射影∴CD⊥EF.21.已知抛物线y2=2px(p>0)的焦点为F,点P是抛物线上横坐标为3的点,且P到抛物线焦点F的距离等于4.(1)求抛物线的方程;(2)过抛物线的焦点F作互相垂直的两条直线l1,l2,l1与抛物线交于A、B两点,l2与抛物线交于C、D两点,M、N分别是线段AB、CD的中点,求△FMN面积的最小值.参考答案:【考点】直线与抛物线的位置关系;抛物线的标准方程;抛物线的简单性质.【分析】(1)利用抛物线的定义列出方程求解即可.(2)求出抛物线的焦点坐标,设出直线方程,联立方程组,求出M、N的坐标,然后求解三角形的面积,利用基本不等式求解三角形的面积的最小值即可.【解答】解:(1)抛物线y2=2px(p>0)的准线为,由题意,,p=2.

…所以所求抛物线的方程为y2=4x.

…(2)F(1,0),由题意,直线l1、l2的斜率都存在且不为0,设直线l1的方向向量为(1,k)(k>0),则(1,k)也是直线l2的一个法向量,所以直线l1的方程为,即y=k(x﹣1),…直线l2的方程为y=﹣(x﹣1),即x+ky﹣1=0.

…设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4)由,得k2x2﹣(2k2+4)x+k2=0…则=1+.=

…同理可得,.

…所以,|MF|==,|FN|==,∴△FMN面积:?=2(k+)≥4=4.

…所以,当且仅当k=,即k=1时,△FMN的面积取最小值4.…22.某学校对手工社、摄影社两个社团招新报名的情况进行调查,得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论