




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
欢迎阅读本文档,希望本文档能对您有所帮助!欢迎阅读本文档,希望本文档能对您有所帮助!感谢阅读本文档,希望本文档能对您有所帮助!感谢阅读本文档,希望本文档能对您有所帮助!欢迎阅读本文档,希望本文档能对您有所帮助!感谢阅读本文档,希望本文档能对您有所帮助!初中数学的相似初中数学组卷
2020年06月18日初中数学的初中数学组卷一.选择题(共11小题)1.下列计算结果正确的是()A.=±6B.(﹣ab2)3=﹣a3b6C.tan45°=D.(x﹣3)2=x2﹣92.如图是由3个大小相同的小正方体组成的几何体,它的左视图是()A.B.C.D.3.一组数据2,1,2,5,3,4的中位数和众数分别是()A.2,2B.3,2C.2.5,2D.3.5,24.2022年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为196000米.196000用科学记数法表示应为()A.1.96×105B.19.6×104C.1.96×106D.0.196×1065.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个6.如图,在菱形ABOC中,AB=2,∠A=60°,菱形的一个顶点C在反比例函数y═(k≠0)的图象上,则反比例函数的解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=7.如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=ADC.a=﹣D.OC•OD=168.计算﹣1的结果为()A.B.xC.1D.9.矩形ABCD中,对角线AC、BD交于点O,AE⊥BD于E,若OE:ED=1:3.AE=,则BD=()A.2B.4C.4D.210.如图,一次函数y1=kx+b与二次函数y2=ax2交于A(﹣1,1)和B(2,4)两点,则当y1<y2时x的取值范围是()A.x<﹣1B.x>2C.﹣1<x<2D.x<﹣1或x>211.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题)12.某多边形内角和与外角和共1080°,则这个多边形的边数是.13.分解因式:2a2+4a+2=.14.如图,直线y=x﹣2与x轴交于点A,以OA为斜边在x轴上方作等腰直角三角形OAB,将△OAB沿x轴向右平移,当点B落在直线y=x﹣2上时,则△OAB平移的距离是.15.如图,矩形ABCD中,E为BC的中点,将△ABE沿直线AE折叠,使点B落在点F处,连接FC,若∠DAF=18°,则∠DCF=度.16.若一次函数y=kx+b(b为常数)的图象过点(3,4),且与y=x的图象平行,这个一次函数的解析式为.17.如图,在平面直角坐标系中,矩形ABCD的顶点A、D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0)、D(0,4),则反比例函数的解析式为.三.解答题(共5小题)18.计算:﹣|﹣2|+()﹣1﹣2cos45°19.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.20.如图,AC为⊙O的直径,B为AC延长线上一点,且∠BAD=∠ABD=30°,BC=1,AD为⊙O的弦,连结BD,连结DO并延长交⊙O于点E,连结BE交⊙O于点M.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径OD的长;(3)求线段BM的长.21.如图,直线AD与x轴交于点C,与双曲线y=交于点A,AB⊥x轴于点B(4,0),点D的坐标为(0,﹣2).(1)求直线AD的解析式;(2)若x轴上存在点M(不与点C重合),使得△AOC和△AOM相似,求点M的坐标.22.如图,已知抛物线y=﹣x2+ax+3的顶点为P,它分别与x轴的负半轴、正半轴交于点A,B,与y轴正半轴交于点C,连接AC,BC,若tan∠OCB﹣tan∠OCA=.(1)求a的值;(2)若过点P的直线l把四边形ABPC分为两部分,它们的面积比为1:2,求该直线的解析式.2020年06月18日初中数学的初中数学组卷参考答案与试题解析一.选择题(共11小题)1.下列计算结果正确的是()A.=±6B.(﹣ab2)3=﹣a3b6C.tan45°=D.(x﹣3)2=x2﹣9【解答】解:A、原式=6,不符合题意;B、原式=﹣a3b6,符合题意;C、原式=1,不符合题意;D、原式=x2﹣6x+9,不符合题意.故选:B.2.如图是由3个大小相同的小正方体组成的几何体,它的左视图是()A.B.C.D.【解答】解:如图所示:它的左视图是:.故选:D.3.一组数据2,1,2,5,3,4的中位数和众数分别是()A.2,2B.3,2C.2.5,2D.3.5,2【解答】解:将数据重新排列为1、2、2、3、4、5,则这组数据的中位数为=2.5,众数为2,故选:C.4.2022年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为196000米.196000用科学记数法表示应为()A.1.96×105B.19.6×104C.1.96×106D.0.196×106【解答】解:196000=1.96×105,故选:A.5.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【解答】解:第1个图形是中心对称图形,也是轴对称图形,符合题意;第2个图形不是中心对称图形,是轴对称图形,不符合题意;第3个图形是中心对称图形,也是轴对称图形,符合题意;第4个图形是中心对称图形,也是轴对称图形,符合题意.共3个图形符合题意.故选:B.6.如图,在菱形ABOC中,AB=2,∠A=60°,菱形的一个顶点C在反比例函数y═(k≠0)的图象上,则反比例函数的解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=【解答】解:∵在菱形ABOC中,∠A=60°,菱形边长为2,∴OC=2,∠COB=60°,∴点C的坐标为(﹣1,),∵顶点C在反比例函数y═的图象上,∴=,得k=﹣,即y=﹣,故选:B.7.如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=ADC.a=﹣D.OC•OD=16【解答】解:∵抛物线y=ax2+bx+4交y轴于点A,∴A(0,4),∵对称轴为直线x=,AB∥x轴,∴B(5,4).故A无误;如图,过点B作BE⊥x轴于点E,则BE=4,AB=5,∵AB∥x轴,∴∠BAC=∠ACO,∵点B关于直线AC的对称点恰好落在线段OC上,∴∠ACO=∠ACB,∴∠BAC=∠ACB,∴BC=AB=5,∴在Rt△BCE中,由勾股定理得:EC=3,∴C(8,0),∵对称轴为直线x=,∴D(﹣3,0)∵在Rt△ADO中,OA=4,OD=3,∴AD=5,∴AB=AD,故B无误;设y=ax2+bx+4=a(x+3)(x﹣8),将A(0,4)代入得:4=a(0+3)(0﹣8),∴a=﹣,故C无误;∵OC=8,OD=3,∴OC•OD=24,故D错误.综上,错误的只有D.故选:D.8.计算﹣1的结果为()A.B.xC.1D.【解答】解:原式==,故选:A.9.矩形ABCD中,对角线AC、BD交于点O,AE⊥BD于E,若OE:ED=1:3.AE=,则BD=()A.2B.4C.4D.2【解答】解:∵四边形ABCD是矩形,∴OA=OB=OD,∵OE:ED=1:3,∴OE:OD=1:2,∴OE=OB,∵AE⊥BD,∴AE垂直平分OB,∴AB=OA,∴△ABO是等边三角形,∵AE=,∴OE=AE=1,∴OB=2OE=2,∴BD=2OB=4;故选:C.10.如图,一次函数y1=kx+b与二次函数y2=ax2交于A(﹣1,1)和B(2,4)两点,则当y1<y2时x的取值范围是()A.x<﹣1B.x>2C.﹣1<x<2D.x<﹣1或x>2【解答】解:∵一次函数y1=kx+b与二次函数y2=ax2交于A(﹣1,1)和B(2,4)两点,从图象上看出,当x>2时,y1的图象在y2的图象的下方,即y1<y2,当x<﹣1时,y1的图象在y2的图象的下方,即y1<y2.∴当x<﹣1或x>2时,y1<y2.故选:D.11.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个【解答】解:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,(故①正确);∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,(故②错误);∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,(故③正确);∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,(故④错误).故选:B.二.填空题(共6小题)12.某多边形内角和与外角和共1080°,则这个多边形的边数是6.【解答】解:∵多边形内角和与外角和共1080°,∴多边形内角和=1080°﹣360°=720°,设多边形的边数是n,∴(n﹣2)×180°=720°,解得n=6.故答案为:6.13.分解因式:2a2+4a+2=2(a+1)2.【解答】解:原式=2(a2+2a+1)=2(a+1)2,故答案为:2(a+1)2.14.如图,直线y=x﹣2与x轴交于点A,以OA为斜边在x轴上方作等腰直角三角形OAB,将△OAB沿x轴向右平移,当点B落在直线y=x﹣2上时,则△OAB平移的距离是6.【解答】解:y=x﹣2,当y=0时,x﹣2=0,解得:x=4,即OA=4,过B作BC⊥OA于C,∵△OAB是以OA为斜边的等腰直角三角形,∴BC=OC=AC=2,即B点的坐标是(2,2),设平移的距离为a,则B点的对称点B′的坐标为(a+2,2),代入y=x﹣2得:2=(a+2)﹣2,解得:a=6,即△OAB平移的距离是6,故答案为:6.15.如图,矩形ABCD中,E为BC的中点,将△ABE沿直线AE折叠,使点B落在点F处,连接FC,若∠DAF=18°,则∠DCF=36度.【解答】解:∵四边形ABCD是矩形,∴∠BAD=∠B=∠BCD=90°,由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,∵∠DAF=18°,∴∠BAE=∠FAE=(90°﹣18°)=36°,∴∠AEF=∠AEB=90°﹣36°=54°,∴∠CEF=180°﹣2×54°=72°,∵E为BC的中点,∴BE=CE,∴FE=CE,∴∠ECF=(180°﹣72°)=54°,∴∠DCF=90°﹣∠ECF=36°;故答案为:36.16.若一次函数y=kx+b(b为常数)的图象过点(3,4),且与y=x的图象平行,这个一次函数的解析式为y=x+1.【解答】解:∵一次函数y=kx+b的图象平行于y=x,∴k=1,∴这个一次函数的解析式为y=x+b.把点(3,4)代入得,4=3+b,解得b=1,所以这个一次函数的解析式为y=x+1,故答案为y=x+1.17.如图,在平面直角坐标系中,矩形ABCD的顶点A、D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0)、D(0,4),则反比例函数的解析式为y=.【解答】解:∵BD∥x轴,D(0,4),∴B、D两点纵坐标相同,都为4,∴可设B(x,4).∵矩形ABCD的对角线的交点为E,∴E为BD中点,∠DAB=90°.∴E(x,4).∵∠DAB=90°,∴AD2+AB2=BD2,∵A(2,0),D(0,4),B(x,4),∴22+42+(x﹣2)2+42=x2,解得x=10,∴E(5,4).∵反比例函数y=(k>0,x>0)的图象经过点E,∴k=5×4=20,∴反比例函数的解析式为y=故答案为y=.三.解答题(共5小题)18.计算:﹣|﹣2|+()﹣1﹣2cos45°【解答】解:原式=2﹣2+3﹣2×=2+1﹣=+1.19.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.【解答】解:(1)设1辆甲种客车与1辆乙种客车的载客量分别为x人,y人,,解得:,答:1辆甲种客车与1辆乙种客车的载客量分别为45人和30人;(2)设租用甲种客车a辆,依题意有:,解得:6>a≥4,因为a取整数,所以a=4或5,∵5×400+1×280>4×400+2×280,∴a=4时,租车费用最低,为4×400+2×280=2160.20.如图,AC为⊙O的直径,B为AC延长线上一点,且∠BAD=∠ABD=30°,BC=1,AD为⊙O的弦,连结BD,连结DO并延长交⊙O于点E,连结BE交⊙O于点M.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径OD的长;(3)求线段BM的长.【解答】解:(1)证明:∵OA=OD,∠BAD=∠ABD=30°,∴∠BAD=∠ADO=30°,∴∠DOB=∠BAD+∠ADO=60°,∴∠ODB=∠180°﹣∠DOB﹣∠ABD=90°,∵OD为⊙O的半径,∴直线BD是⊙O的切线;(2)∵∠ODB=90°,∠ABD=30°,∴OD=OB,∵OC=OD,∴BC=OC=1,∴⊙O的半径OD的长为1;(3)∵OD=1,∴DE=2,BD=,∴BE==,如图,连接DM,∵DE为⊙O的直径,∴∠DME=90°,∴∠DMB=90°,∵∠EDB=90°,∴∠EDB=∠DME,又∵∠DBM=∠EBD,∴△BMD∽△BDE,∴=,∴BM===.∴线段BM的长为.21.如图,直线AD与x轴交于点C,与双曲线y=交于点A,AB⊥x轴于点B(4,0),点D的坐标为(0,﹣2).(1)求直线AD的解析式;(2)若x轴上存在点M(不与点C重合),使得△AOC和△AOM相似,求点M的坐标.【解答】解:(1)把x=4代入y=得到y=2,∴A(4,2),设直线ADA的解析式为y=kx+b,则有,解得.∴直线AD的解析式为y=x﹣2.(2)对于直线y=x﹣2,令y=0,得到x=2,∴C(2,0),∴OC=2,∵A(4,2),∴OA==2,在△AOC中,∠ACO是钝角,若M在x轴的负半轴上时,∠AOM>∠ACO,因此两三角形不可能相似,所以点M只能在x轴的正半轴上,设OM=m,∵M与C不重合,∴△AOC∽△AOM不合题意舍弃,∴当=,即=时,△AOC∽△MOA,解得m=10,∴点M的坐标为(10,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年咸阳秦都怡心学校招聘考前自测高频考点模拟试题含答案详解
- 浙江国企招聘2025杭州临安文商旅集团有限公司7月公开招聘工作人员3人笔试历年参考题库附带答案详解
- 浙江国企招聘2025台州市商贸核心区开发建设投资集团有限公司公开招聘工作人员3人笔试历年参考题库附带答案详解
- 平武县国有资产监督管理办公室市场化招聘平武县光大国有投资(集团)有限公司高级管理人员笔试历年参考题库附带答案详解
- 2025陕西省西咸新区空港国际文化旅游产业投资有限公司招聘8人笔试历年参考题库附带答案详解
- 2025重庆市綦江区兴农融资担保有限责任公司招聘员工1人笔试历年参考题库附带答案详解
- 2025重庆合川燃气有限责任公司外包岗位招聘1人笔试历年参考题库附带答案详解
- 2025贵州纳雍县志宏就业扶贫劳务有限公司招聘10人笔试历年参考题库附带答案详解
- 2025贵州中建伟业建设(集团)建筑科技有限责任公司招聘笔试历年参考题库附带答案详解
- 2025福建福州市园林建设开发有限公司社会化人员招聘2人笔试历年参考题库附带答案详解
- 北京初一新生分班(摸底)语文考试模拟试卷(10套试卷带答案解析)
- 乌鲁木齐家乡介绍旅游攻略
- (高清版)JTGT 3365-01-2020 公路斜拉桥设计规范
- 专业技术人员年度考核情况登记表
- GB/T 33285.2-2024皮革和毛皮烷基酚及烷基酚聚氧乙烯醚的测定第2部分:间接法
- 医院护理培训课件:《成人早期预警评分系统介绍》
- 2023保密知识测试题库含答案
- 危险化学品安全作业(氧化工艺)考试题库(含答案)
- 中国农业银行笔试题库(含答案)
- GA 1808-2022军工单位反恐怖防范要求
- 工程建设项目绿色建造施工水平评价申请表
评论
0/150
提交评论