纽约联储-新冠肺炎疫情后自然利率的测算(英)_第1页
纽约联储-新冠肺炎疫情后自然利率的测算(英)_第2页
纽约联储-新冠肺炎疫情后自然利率的测算(英)_第3页
纽约联储-新冠肺炎疫情后自然利率的测算(英)_第4页
纽约联储-新冠肺炎疫情后自然利率的测算(英)_第5页
已阅读5页,还剩95页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

NO.1063

JUNE2023

MeasuringtheNaturalRateofInterestafterCOVID-19

KathrynHolston|ThomasLaubach|JohnC.Williams

MeasuringtheNaturalRateofInterestafterCOVID-19

KathrynHolstonThomasLaubach,andJohnC.Williams

FederalReserveBankofNewYorkStaffReports,no.1063

June2023

JELclassification:C32,E43,E52,O40

Abstract

WemodifytheLaubach-WilliamsandHolston-Laubach-Williamsmodelsofthenaturalrateofinteresttoaccountfortime-varyingvolatilityandapersistentCOVIDsupplyshockduringthepandemic.ResultingestimatesofthenaturalrateofinterestintheUnitedStates,Canada,andtheEuroAreaattheendof2022areclosetotheirrespectivelevelsestimateddirectlybeforethepandemic;thatis,wedonotfindevidencethattheeraofhistoricallylowestimatednaturalratesofinteresthasended.Incontrast,estimatesofthenaturalrateofoutputhavedeclinedrelativetothoseprojectedbeforethepandemic.

Keywords:naturalrateofoutput,time-varyingvolatility,Kalmanfilter,trendgrowth,COVID-19pandemic

_________________

Williams:FederalReserveBankofNewYork(email:john.c.williams@).Holston:Harvard

University(email:kathrynaholston@).Thispaperbuildsuponandextendstheworkofthethreeauthorsthatwasinitiallycontainedinthenote“AdaptingtheLaubachandWilliamsandHolston,Laubach,andWilliamsModelstotheCOVID-19Pandemic,”May27,2020.TheauthorsthankparticipantsattheThomasLaubachResearchConferenceforvaluablecomments.TheyalsothankLoganCaseyforoutstandingresearchassistance.Thispaperpresentspreliminaryfindingsandisbeingdistributedtoeconomistsandotherinterestedreaderssolelytostimulatediscussionandelicitcomments.Theviewsexpressedinthispaperarethoseoftheauthor(s)anddonotnecessarilyreflectthepositionoftheFederalReserveBankofNewYork,theFederalOpenMarketCommittee,ortheFederalReserveSystem.Anyerrorsoromissionsaretheresponsibilityoftheauthor(s).Toviewtheauthors’disclosurestatements,visit

/research/staff_reports/sr1063.html

.

1

1Introduction

Thedownwardtrendinestimatesofthenaturalrateofinteresttohistoricallylowlev-elsobservedinmanycountrieshasgarneredconsiderableattentionanddebateabouttheirsourcesandconsequences(LaubachandWilliams,2016,GourinchasandRey,2019,RachelandSummers,2019).1Theeventsofthepastfewyears,includingtheCOVID-19pandemicandsubsequentpolicyactions,haverenewedthedebateoverwhetherhistoricallylownaturalratesofinterestwillpersistinthepost-pandemicera(InternationalMonetaryFund,2023,Obstfeld,2023).Answeringthisquestionusingempiricalmodelsofthenaturalrateofinteresthasbeenchallengingowingtotheunprecedentedmacroeconomicvolatilityacrosstheglobeduringthepandemic.Thispaperdevelopsandimplementsadata-drivenapproachthataddressestheextraordi-naryeffectsofthepandemicusingtheHolston,Laubach,andWilliams(HLW,2017)andLaubachandWilliams(LW,2003)modelsofthenaturalrateofinterest.Ourapproachpreservestothegreatestextentthebasicstructureandflexibilityoftheoriginalmodels,whileprovidingconsistentmodelestimatesofnaturalratesbefore,during,andafterthepandemicperiod.Italsohasbroaderapplicationtomodelsthatestimatelatentvariablesusingfrequentist(asinHLWandLW)andBayesianmethods.

TheHLWandLWmodelsapplytheKalmanfiltertotranslatemovementsinrealGDP,inflation,andshort-terminterestratesintoestimatesoftrendgrowth,thenaturalrateofoutput,andthenaturalrateofinterest.Themodel’sstructureisflexibleandincorporatestransitoryandpermanentshockstosupplyanddemandanddynamicendogenousbehaviorofinflationandoutput.However,likeothermodelsthatusetheKalmanorotherstatisticalfilters,identifyingassumptionsregardingthenatureoftheshockprocessesareimposed.Inparticular,theshocksareassumedtobeseriallyuncorrelatedanddescribedbytime-invariantGaussiandistributions.TheCOVID-19pandemicgeneratedextraordinaryswingsinmacroeconomicdatathataredramaticallyatoddswithbothoftheseassumptions.

First,theassumptionofatime-invariantGaussiandistributionfortheshockpro-cessesisclearlycontradictedbythedata.Relativetothehistoricalexperienceofthepriorhalfcentury,theCOVID-19pandemicisanextremetaileventintermsofits

1Thereisarelatedliteratureonthehistoryofrealinterestratesoveraverylongtimespan.See,forexample,Rogoff,Rossi,andSchmelzing(2022)andreferencestherein.

3

demonstratethatthesetwomodificationseffectivelyaddressthetwoeconometricissuesassociatedwiththepandemic.3Theestimationprocedureyieldsparameterestimatesconsistentwiththemodelstructure,andthepre-pandemicestimatesofthenaturalratesofoutputandinterestandthetrendgrowthrateareverysimilartothoseestimatedondataendingin2019.

ThepatternofhistoricallylowestimatesoftrendGDPgrowthandthenaturalrateofinterestexperiencedbeforethepandemicpersistaftertheCOVID-19pandemic.Inallthreeeconomies,theestimatesoftrendgrowthandthenaturalrateofinterestin2022arewithinafewtenthsofapercentagepointofthecorrespondingestimatesfor2019.Inparticular,theseestimatesprovidenoevidenceofareversalofthetrenddeclineinestimatesofthenaturalrateofinterestbasedondatathrough2022.

Inallthreeeconomies,estimatesoftheCOVID-adjustednaturalrateofoutputin2022aresignificantlylowerthanwhatthemodelpredictsbasedonpre-pandemicdata.ThesedeclinesreflectboththeestimatedeffectsofCOVID-relatedrestrictionsandpermanentnegativeshockstothenaturalrateofoutput.Accordingtothemodel,thesedeclinesinthenaturalrateofoutputarethemosteconomicallysignificantlastingeffectsoftheCOVIDera.

Thispaperisorganizedasfollows.Section2describestheHLWmodelandtheevidenceofsignificantdeparturesfromthemodel’sassumptionsbroughtonbytheCOVID-19pandemic.Section3describesthemodificationstothemodeltoaddressthepandemic-relatedeffects.Section4reportsestimationresults.Section5reportsresultsfromrobustnessexercises.Section6concludes.

2ResultsfromthePre-PandemicModel

Inthissection,weprovideashortdescriptionoftheoriginalHLWmodel.Weshowthatthedataduringthepandemicgeneratelargeoutliersthatareinconsistentwiththeassumptionsofthemodel.

ceduresforbothmodels.Specifically,consistentwiththespecificationoftheLWmodel,wenowestimatetherelationshipbetweentrendgrowthandthenaturalrateofinterestintheHLWmodel,insteadofrestrictingittounity.Wealsomakeminortechnicaladjustmentsthataligntheassump-tionsusedinthevariousstagesofthemodelestimationprocedure,describedinAppendixA1.

3InHLW(2017),themodelwasalsoestimatedusingdatafromtheUnitedKingdom.ExtendingthesampletoincludethemostrecentyearshasweakenedtheestimatedrelationshipbetweentheoutputgapandrealinterestratesintheUKdata,makingestimatesofthenaturalrateofinteresthighlyunreliable.Forthatreason,wenolongerestimatethemodelfortheUnitedKingdom.

4

2.1TheOriginalHLWModel

IntheHLWmodel,thenaturalrateofinterest,r,istherealinterestrateconsistentwithoutputequalingitsnaturalrate,y,andstableinflation.Asisstandardinthisliterature(e.g.,seeWoodford,2003),wemodeltheoutputgapandinflationdynamicsasafunctionoftherealinterestrategap,rt−r,usinganintertemporalISequationandPhillipscurverelationship,inlinewiththeNewKeynesianframework:

2

t=ay,1t−1+ay,2t−2+工(rt−j−r−j)+ϵ,t

j=1

πt=bππt−1+(1−bπ)πt−2,4+byt−1+ϵπ,t

(1)

(2)

Theoutputgapisdefinedast=100·(yt−y),whereytandyarelogarithmsofrealGDPandtheunobservednaturalrateofoutput,respectively,rtistherealshort-terminterestrate,πtdenotesconsumerpriceinflation,andπt−2,4istheaverageofthesecondtofourthlagsoftheinflationrate.4Thestochasticdisturbancesϵ,tandϵπ,taretransitoryshockstotheoutputgapandinflationequations,respectively.

WeusetheKalmanfiltertoestimatethelatentvariables,whicharethenaturalrateofoutput,itstrendgrowthrate,andaprocesscapturingotherlow-frequencydeterminantsofthenaturalrateofinterest.InkeepingwiththestandardKalmanfilterapproach,thestochasticinnovationstothemeasurementequations–theISandPhillipscurveequations–areassumedtofollowaGaussiandistributionwithstandarddeviationsσy~andσπ,respectively,andtobemutuallyandseriallyuncorrelated.

Incontrasttothetransitoryshockstotheoutputgapandinflationequations,movementsinrreflecthighlypersistent,orpermanent,shiftsintherelationshipbetweentherealshort-terminterestrateandtheoutputgap(Williams,2003).Thelawofmotionforthenaturalrateofinterestisgivenby

r=c·gt+zt(3)

wheregtisthetrendgrowthrateofthenaturalrateofoutput,andztcapturesotherdeterminantsofrWespecifythethreelatentvariablesinourstate-spacemodel

4SeeHLW(2017)Section2andAppendixAfordetailsofthemodelspecification.Wetakeasastartingpointtheopen-economyNewKeynesianmodelspecificationasinGal´ı(2008)andrelaxtwostandardrestrictionstoworkwithreduced-formISandPhillipscurveequations.

5Notethat,consistentwithLW(2003),werelaxtheassumptioninHLW(2017)ofaone-for-one

5

asfollows.Thelogarithmofthenaturalrateofoutputfollowsarandomwalkwithastochasticdrift,gt,thatitselffollowsarandomwalk,

y=y−1+gt−1+ϵy*,t

gt=gt−1+ϵg,t

(4)

(5)

andthecomponentztcapturingotherdeterminantsofr,whichisassumedtofollowarandomwalkaswell,

zt=zt−1+ϵz,t(6)

Weassumethatthedisturbancesϵy*,t,ϵg,t,andϵz,tarenormallydistributedwithstan-darddeviationsσy*,σg,andσz,respectively,andareseriallyandcontemporaneouslyuncorrelatedwithallotherdisturbances.

Equations1and2makeupthemeasurementequationsinourstate-spacemodelandcanbeexpressedas

yt=A\·xt+H\·ξt+ϵt(7)

withstochasticinnovationsϵt.Equations4,5,and6makeupthestateequationsinourstate-spacemodel,writtenas

ξt=F·ξt−1+ηt(8)

whereξtisthestatevectoroflatentvariablesandηtisthevectorofstochasticinnovations.SeeAppendixA1forthefullstate-spacerepresentationofthemodel.

2.2OutliersinEstimationwith2019:Q4ModelParameters

WenowanalyzehowtheextrememovementsinGDPandinflationduringtheCOVID-19pandemicyieldlargeoutliersinthestandardHLWmodel.Wethenshowthatesti-matesofthelatentvariablesareheavilyaffectedbythesesizableoutliers,evenwhenweconstrainthemodelparametersattheirpre-pandemicvalues,anddemonstratethatmodificationstotheHLWandLWmodelsarenecessary.

relationshipbetweentrendgrowthandthenaturalrateofinterestandestimatethisrelationship.SeeAppendixA1fordetailsonchangestotheHLW(2017)model.

6

Beforemakinganyadjustmentstothemodels,webeginbyestimatingthestan-dardHLWmodelinSection2.1withdatathrough2019:Q4,priortotheonsetoftheCOVID-19pandemic.6Forreference,theupperthreepanelsofFigure2showthefullsamplesofdata.Wefixthemodelparametersattheirestimatedvaluesandre-estimatethelatentvariablesthrough2022:Q4usingtheKalmanfilter,takingallparametervaluesasgivenfromthe2019:Q4estimatedmodel.Wealsofixtheinitialvectorofunobservedstatesanditscovariancematrixatthe2019:Q4values.7Thisexerciseisequivalenttodroppingobservationsbeginningin2020:Q1throughtheendofthesampleduringthemaximumlikelihoodestimationofmodelparameters,whileallowingtheKalmanupdatingproceduretocontinuewithoutmodificationthroughtheendofthesample.Inotherwords,wemakenomodificationstothestate-spacemodel,exceptthatthemodelcoefficientmatricesandcovariancematricesintheKalmanfilteringprocedurearefixedattheir2019:Q4values.Thiswouldbeasuit-ableapproachifwetaketheviewthatthepandemicperiodisnotinformativeforthemodelparameters,suchastheslopesoftheISandPhillipscurveequations,butisinformativeforthelatentvariables.

ThefinalstepoftheKalmanfilteringproceduretoestimatethevectorofunob-servedstatevariablesattimet(denotedasξˆt|t,andconditionalontheinformationsetattimet)isgivenbytheKalmanupdatingequation,

ξˆt|t=ξˆt|t−1+Kt·(yt−A′·xt−H′·ξˆt|t−1)

山、

尸使

one-step-aheadpredictionerror

(9)

whereξˆt|t−1istheinitialestimateofthestatevectorduringtheperiod,conditionalontheinformationsetattimet−1,andKtistheKalmangainmatrix.Thefinaltermcontainstheone-step-aheadpredictionerrors(orforecasterrors)correspondingtothemeasurementequationsinthemodel.Theseone-step-aheadpredictionerrorsaretheresidualstotheISandPhillipscurveequations,usingtheforecastofyt(thevectorofcontemporaneousendogenousvariables,thatis,theoutputgapandinflation)based

6Throughoutthepaper,weusethecurrentdatavintageatthetimeofpublication,regardlessofthesampleperiod.

7Westoretheestimatedparametervectorθfromthefinal(stage3)modelaswellasthesignal-to-noiseratiosλgandλXfromthemedianunbiasedestimationproceduresfollowingstages1and2,respectively.SeeHLW(2017)foradescriptionoftheestimationprocedureandfootnote6fortheinitializationprocessofthevectorofunobservedstates,itsconditionalexpectationξ1|0inthefirstperiod,andthecovariancematrixP1|0.

7

onthedataattimetandinformationattimet−1,correspondingtothestatevector

ξˆt|t−1:

yt−E[yt|xt,ζt−1]=yt−(A′·xt+H′·ξˆt|t−1)

(10)

InEquation9,theKalmangainmatrixdictatestheweightplacedontheone-step-aheadpredictionerrorsduringthelatentvariableestimation.AlargerKalmangainKtindicatesthatthefinalestimatesofthelatentvariablesaremoreheavilyinfluencedbythegapbetweentherealizeddataandthemodel’sprediction,relativetoξˆt|t−1,

thepriorestimateofξtconditionaloninformationintheprecedingperiod.

Inthisinitialexercise,thecoefficientmatricesH′(onthestatevectorξˆt|t−1)andA′(onthedataxt)arefixedattheir2019:Q4values.Theresultingone-step-aheadpredictionerrorsareverylargeduringmuchofthepandemicperiod.Theselargeforecasterrorstranslatedirectlytotheestimatedvectorofunobservedlatentvariables(y,gt,zt),sothatthedataduringthisperiodhaslargeeffectsonestimatesoftheselatentvariables.

BecausetheHLWmodelisanunobserved-componentsmodel,thereexistsan-othersetofmodelresidualsinadditiontotheone-step-aheadpredictionerrorsthatarecommonlyusedfordiagnostictesting.Theseauxiliaryresidualsaresmoothedestimatorsofthedisturbancestothemeasurementequations,ϵt,andtothestateequations,ηt,meaningthattheyincorporateallavailableinformationoverthefullsampleperiodandprovideadifferentinterpretationofthestochasticinnovations(HarveyandKoopman,1992;Harveyetal.1999).Theyhavetheadvantageinapplyingatestforoutliers:undertheassumptionthatthestochasticinnovationsarefromaGaussiandistribution,standardizedauxiliaryresidualsgreaterthan2(inabsolutevalue)indicateeitherthepresenceofoutliersorstructuralchange.

WeusethealgorithmfromKoopmanandDurbin(2000)toobtainthestandard-izedauxiliaryresidualstothemeasurementequations,t/e,t,andtothestateequa-tions,t/η,t.ThegoldlinesinFigure3showsthatthestandardizedauxiliaryresid-ualstothemeasurementequations,givenby

te,t

=

E[ϵt|yT,xT,ζT]

SD[ϵt|yT,xT,ζT],

(11)

indicateextremeoutlierstotheoutputgapequationinalleconomiesinoursample,underthestandardHLWmodelusing2019:Q4parametervalues.IntheUnitedStatesandCanada,standardizedauxiliaryresidualstotheISequationare9to10timesthe

8

outlierthresholdforaGaussianmodelinthesecondquarterof2020,and17timesthethresholdintheEuroArea.Whilenotasextreme,themodelresidualsalsodetectoutlierstotheinflationequationineachofthethreeeconomies,withstandardizedauxiliaryresidualstothePhillipscurveequationreachingdoubletheoutlierthresholdintheUnitedStates.

Standardizedauxiliaryresidualstotheunobservedstateequationsaregivenby

tη,t

=

E[ηt|yT,xT,ζT]

SD[ηt|yT,xT,ζT]

(12)

AsshownbythegoldlinesinFigure4,theseresidualsdemonstratethepresenceofextremeoutlierstothenaturalrateofoutputinthestandardHLWmodelacrossalloftheeconomiesinoursample.

ThisobservationisnotuniquetotheHLWmodel.Figure1showsthatGDPreal-izationsduringthepandemicareoutlierswithrespecttohistoricaldata.Macroeco-nomicfluctuationsofthismagnitudewouldresultinoutliersinanystandardmacroe-conomicmodel.Asexpected,evenwhenpandemic-eraGDPandinflationdataareexcludedduringparameterestimation,usingtheKalmanfilterwiththeseextremeoutlierspresentinthesamplesignificantlydistortsestimatesofthelatentvariablesduringthepandemicperiod.ThegoldlinesinFigure5displayslargeswingsintheestimatesofthelatentvariablesusingthemodelwith2019:Q4parametervalues.Theextremevolatilityintheseestimatesisinconflictwiththespecificationoftheselatentvariablesasreflectinglower-frequencymovements.

3COVID-adjustedModel

TheobjectiveofthispaperistoestimatethenaturalrateofinterestfollowingtheCOVID-19pandemicinawaythatisconsistentwiththeHLWmodeloutlinedinSec-tion2.1.Thelargemovementsineconomicactivityandthepersistentsupplyshocksduringthepandemicperiodviolatetwostandard,butimportant,modelassumptionsinHLW.AsweshowinSection2.2,droppingtheobservationsfromthisperiodduringthemaximumlikelihoodestimationofmodelparametersisinsufficienttoovercometheseviolatedmodelassumptions,withmodelresidualsindicatingthepresenceoflargeoutliers.Theresultingestimatesofthenaturalratesofoutputandinterestareextremelyvolatileandinconsistentwithourspecificationofrasamedium-run

9

conceptthatisdrivenbylow-frequencymovements.

ThissectiondetailstwoadjustmentstotheHLWmodelthat,takentogether,addresstheviolationstotheoriginalmodel.Thefirstistheintroductionoftime-varyingvolatilityinthemodel,whichweimplementbyallowingthevariancesofthestochasticinnovationstotheoutputgapandinflationequationstobehigherintheCOVIDerarelativetothenon-pandemicperiod.Thesecondistheintroductionofapersistent,butultimatelytemporary,COVIDsupplyshock,inadditiontothetransitoryandpermanentdemandandsupplyshocksthatarealreadypresentinthemodel.Eachofthesemodificationsaloneisinsufficienttoovercometheestimationchallengesposedbythepandemic,butinconjunctionwitheachothertheyallowforcontinuedestimationofthenaturalrateofinterest.

Importantly,becauseweareestimatinglatentvariablesthatarespecifiedasran-domwalks,simplydroppingtheobservationsduringthepandemicperiodwouldnotonlyunderstatethetrueuncertaintyassociatedwiththisperiod,butwouldalsone-cessitateinterpolatingtheselatentvariablesfromtheirpre-pandemicvalues.Instead,ratherthanimposingthatthesevariablesdonotchangeasaresultoftheCOVID-19pandemic,weareabletoletthedatainformtheestimatednaturalratesofinterestandoutputafterthepandemichasabated.Whiletheintroductionoftime-varyingvolatilityhasasimilareffectonthelatentvariablesasdroppingtheobservationsfrom2020,ourapproachprovidesmoreflexibilityinthelateryearsofthepandemicanddoesnotrequirethestrongassumptionthatseveralyearsofdatahasnoeffectonthelatentvariables.Additionally,theHLWmodelwithtime-varyingvolatilitybutwithoutseriallycorrelatedshockstosupplywouldconstrainhowthenaturalrateofoutputcouldevolveinresponsetothepandemicdata.ModelingthepersistentCOVIDsupplyshockisnecessaryinordertocapturetheeffectsofthepandemiconthenaturalrateofoutput.

3.1Time-VaryingVolatilityduringCOVID-19

COVID-19representsanextremetaileventrelativetotheassumptionofGaussiandisturbances.AsweshowinSection2.2,theresultingoutlierscontaminateestimatesofthelatentvariablesevenwhenweexcludethemfromtheestimationofmodelparameters.Thisisastatisticalproblemthatisnotuniquetoourmodelortoestimationofthenaturalrateofinterest.Wepresentastraightforwardapproachto

10

accountforthesubstantialincreaseinvolatilityduringthisperiodbyintroducingtime-varyingvolatilityinthemodelduringthewindowoftimeassociatedwiththeCOVID-19pandemic.WebuildonaninsightfromLenzaandPrimiceri(2022):ifthetimingofincreasedvolatilityisknown–asisthecasefortheCOVIDpandemic–wecanintroducetime-varyingvolatilityinthemodeldirectlybyapplyingascalefactortotheinnovationvariancesduringtheperiodofincreasedvolatility.Weapplythisinsighttoourunobserved-componentsmodelinordertoestimatethenaturalrateofinterest,butourapproachcangeneralizetoanystate-spacemodelwithlatentvariables.

Inparticular,weintroducethreenewmodelparameters,κ2020,κ2021,andκ2022.Thesearethevariancescaleparametersfor2020,2021,and2022,respectively,whichmultiplythevariancesoftheinnovationstotheoutputgapandinflationequations.Wedefinethevectorκtofvariancescaleparametersattimet,thattakesthevalues

κ2020

κ2022

κt=〈κ2021

(1

2020:Q2≤t≤2020:Q4

2021:Q1≤t≤2021:Q4

2022:Q1≤t≤2022:Q4

otherwise

(13)

Weestimatethethreevariancescaleparametersbymaximumlikelihoodtogetherwiththeothermodelparameters,withtheconstraintsκ2020≥1,κ2021≥1,andκ2022≥18.κttakesthevalueof1beforethepandemicperiodandin2023andbeyond.Section5.1considersalternativespecificationsoftime-varyingvolatility.

Thecovariancematrixofthestochasticinnovationstotheoutputgapandinflationequationsisnowtime-varyingandisgivenby

Rt=κ·R=[(κt]

(14)

withtime-varyinginnovationvariancestotheIScurveandPhillipscurveequationsof(κtσy~)2and(κtσπ)2,respectively.

8Therestrictionthatκt≥1isnecessarytoensurethatthelikelihoodestimationcannotdown-weightthevarianceofcertainobservations,whichwouldineffectallowittoplacemoreweightonfavorableobservations.Instead,theestimatedκtfactorscanonlyincreasetheinnovationvariancesduringthepandemicperiod.

11

Outsideofthepandemicperiod,theinnovationvariancesarespecifiedexactlyasinHLW(2017).Thatis,theinnovationvariancestotheoutputgapequation,σ,andinflationequation,σ,areconstantoverthesamplepriorto2020andafter2022.Duringtheyear2021,forexample,theinnovationvariancestakethevalues(κ2021·σy~)2and(κ2021·σπ)2,respectively.Thereforeκtisaratioofthestandarddeviationsofthedisturbancestothemeasurementequations(theoutputgapandinflationequations)attimetrelativetothestandarddeviationsinthenon-pandemicsample.Whenκt>1,aswefindfor2020through2022inalleconomiesinoursample,theinnovationvariancesaregreaterthaninthenon-pandemicsample.

Introducingtime-varyingvolatilitytothestochasticinnovationsviathevariancescalefactorsinκthastheeffectofdown-weightingextremeoutlierobservationsinthemaximumlikelihoodestimationofmodelparametersaswellasinestimationofthelatentvariablesviatheKalmanfilter.Whenκt>1,thediagonalcovariancematrixRtofthedisturbancestotheoutputgapandinflationequationsislargerrelativetothecasewhereκt=1,andtheresultingKalmangainissmaller.AsshowninEquation9,theKalmangaindictatestheweightplacedontheone-step-aheadpredictionerrors–thedifferencebetweenrealizedvaluesoftheoutputgapandinflationinagivenperiodandthemodel’spredictedvaluesbasedoninformationinthepriorperiod–inupdatingthefilteredestimatesofthelatentvariables.Astheinnovationvariancesinagivenperiodbecomelarge,theKalmangainshrinks,sothattheKalmanfilterplacesrelativelylittleweightonthesenewobservationsand

theestimatesofthelatentvariablesinthestatevector(thatis,y,gt,ztandthereforer)remainclosetotheestimatesfromthepriorperiod.

Inthelimitastheinnovationvariancestendtowardinfinity,theKalmangainapproacheszero,sothatnoweightisplacedonthetime-tobservationsinestimatingthestatevector.Ineffect,themodeldoesnotmakeuseoftime-tinformation,sothattheforecastofthestatevectorattimetgiventhetime-tinformationsetisunchangedfromtheforecastgiventheinformationsetattimet−1.ThislimitingcaseisequivalenttodroppingtheCOVID-19observationswhenestimatingthelatentvariables.Thesameholdsforparameterestimation:whenκtislarge,themodelforecasterrorinthisperiodisdown-weightedwhencomputingtheloglikelihoodfu

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论