




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年安徽省阜阳市初级中学高三数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知是公差不为0的等差数列的前项和,且成等比数列,则等于(
)
A.4
B.6
C.8
D.10参考答案:C2.设,则|z|=A.2 B. C. D.1参考答案:C因为所以
3.直线ax+by+a+b=0与圆x2+y2=2的位置关系为(
) A.相交 B.相切 C.相离 D.相交或相切参考答案:D考点:直线与圆的位置关系.专题:计算题.分析:由圆的方程找出圆心坐标与半径r,利用点到直线的距离公式表示出圆心到已知直线的距离d,比较d与r的大小即可得到直线与圆的位置关系.解答: 解:由题设知圆心到直线的距离,而(a+b)2≤2(a2+b2),得,圆的半径,所以直线ax+by+a+b=0与圆x2+y2=2的位置关系为相交或相切.故选D点评:此题考查学生灵活运用点到直线的距离公式化简求值,掌握直线与圆位置关系的判别方法,是一道基础题.4.函数的图象一个对称中心的坐标是()A、B、C、D、参考答案:B5.抛物线的焦点与双曲线的右焦点的连线交于第一象限的点,若在点处的切线平行于的一条渐近线,则
A.
B.
C.
D.参考答案:C设抛物线的焦点与双曲线的右焦点及点的坐标分别为,故由题设可得在切点处的斜率为,则,即,故,依据共线可得,所以,故应选C.6.设集合,,则集合A∩B=()A.(0,1] B.(0,1) C.(1,2) D.[1,2)参考答案:A【分析】求解出集合B,根据交集定义求得结果.【详解】
本题正确选项:7.对任意,函数的导数都存在,若恒成立,且,则下列结论正确的是(
)A. B.C. D.参考答案:D令,则,所以为上单调递增函数,因为,所以,即.8.对于函数,若存在实数,使得成立,则实数的取值范围是(
)A.
B. C. D.参考答案:D略9.设函数的导数f′(x)=2x+1,则数列n∈(N*)的前n项和(
)A.
B.
C.
D.参考答案:C函数的导数为,所以,所以,,即,所以数列的前n项和为,选C.10.在四面体中,若,,,则四面体的外接球的表面积为(
)A.2π
B.4π
C.6π
D.8π参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.曲线的长度是
.参考答案:无略12.已知五边形ABCDE满足AB=BC=CD=DE,∠BAE=∠AED=90°,∠BCD=120°,若F为线段AE的中点,则往五边形ABCDE内投掷一点,该点落在△BDF内的概率为.参考答案:【考点】几何概型.【分析】分别求出△BDF、五边形ABCDE的面积,一面积为测度,即可得出结论.【解答】解:由题意,ABDF为长方形,设AB=1,则BD=,S△BDF==,五边形ABCDE的面积S=1×+=,∴往五边形ABCDE内投掷一点,该点落在△BDF内的概率为=,故答案为.13.设函数的定义域为D,如果存在正实数,使对任意,都有,且恒成立,则称函数为D上的“型增函数”.已知是定义在R上的奇函数,且当时,,若为R上的“型增函数”,则实数的取值范围是
.参考答案:略14.设实数x?y满足约束条件,则z=2x+3y的最大值为.参考答案:26考点:简单线性规划.
专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.解答:解:作出不等式对应的平面区域(阴影部分),由z=2x+3y,得y=,平移直线y=,由图象可知当直线y=经过点A时,直线y=的截距最大,此时z最大.由,解得,即A(4,6).此时z的最大值为z=2×4+3×6=26,故答案为:26点评:本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.15.设其中成公比为的等比数列,成公差为1的等差数列,则的最小值是
.参考答案:略16.已知集合,其中表示和中所有不同值的个数.(Ⅰ)若集合,则;(Ⅱ)当时,的最小值为____________.参考答案:(Ⅰ)6(Ⅱ)213.17.若函数,则
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知{an}为等差数列,且满足a1+a3=8,a2+a4=12.(Ⅰ)求数列{an}的通项公式;(Ⅱ)记{an}的前n项和为Sn,若a3,ak+1,Sk成等比数列,求正整数k的值.参考答案:【考点】等差数列的通项公式;等差数列的前n项和;等比数列的通项公式.【专题】等差数列与等比数列.【分析】(Ⅰ)由题意可得首项和公差的方程组,解方程组可得通项公式;(Ⅱ)由(Ⅰ)可得Sn,进而可得a3,ak+1,Sk,由等比数列可得k的方程,解方程即可.【解答】解:(Ⅰ)设数列{an}的公差为d,由题意可得,解方程组可得a1=2,d=2,∴an=2+2(n﹣1)=2n;(Ⅱ)由(Ⅰ)可得,∴a3=2×3=6,ak+1=2(k+1),,∵a3,ak+1,Sk成等比数列,∴,∴(2k+2)2=6(k2+k),化简可得k2﹣k﹣2=0,解得k=2或k=﹣1,∵k∈N*,∴k=2【点评】本题考查等差数列的通项公式和求和公式,涉及等比数列的通项公式,属中档题.19.(本题满分12分)如图,垂直于正方形.(Ⅰ)若E为侧棱PC的中点,求证:PA//平面BDE.(Ⅱ)若E为侧棱PC上的动点,不论E在何位置,是否都有?证明你的结论.参考答案:(本小题满分12分)解:(1)连接AC,交BD于O,连接OE,因为OE是三角形APC的中位线,所以AP//OE,
…………4分
因为AP不在平面BDE内,OE在平面BDE内,所以PA//平面BDE.…6分(2)因为,,,所以平面APC,………10分E为侧棱PC上的动点,不论E在何位置,AE均在平面APC内,所以都有.
………12分略20.已知函数f(x)=+bx(a≠0),g(x)=1+lnx.(Ⅰ)若b=1,且F(x)=g(x)﹣f(x)存在单调递减区间,求a的取值范围;(Ⅱ)设函数g(x)的图象C1与函数f(x)的图象C2交于点M、N,过线段MN的中点T作x轴的垂线分别交C1、C2于点P、Q,是否存在点T,使C1在点P处的切线与C2在点Q处的切线平行?如果存在,求出点T的横坐标,如果不存在,说明理由.参考答案:【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【专题】导数的综合应用.【分析】(Ⅰ)先求函数F(x)的解析式,因为函数F(x)存在单调递减区间,所以F'(x)<0有解,求出a的取值范围;(2)利用反证法证明设点P、Q的坐标分别是(x1,y1),(x2,y2),0<x1<x2.假设C1在点M处的切线与C2在点N处的切线平行.求出函数的导数,求得切线的斜率,通过构造函数,求导数判断单调性,结论即可得证【解答】解:(1)b=1时,函数F(x)=g(x)﹣f(x)=1+lnx﹣﹣x,x>0,则F′(x)=﹣ax﹣1=﹣因为函数F(x)存在单调递减区间,所以F'(x)<0有解,即ax2+x﹣1>0,有x>0的解.①a>0时,y=ax2+x﹣1为开口向上的抛物线,y=ax2+x﹣1>0总有x>0有解;②a<0时,y=ax2+x﹣1为开口向下的抛物线,而y=ax2+x﹣1>0总有x>0的解;则△=1+4a>0,且方程y=ax2+2x﹣1=0至少有一个正根,此时,.综上所述,a的取值范围为(﹣,0)∪(0,+∞);(2)设点M、N的坐标是(x1,y1),(x2,y2),0<x1<x2,则点P、Q的横坐标为,C1点在P处的切线斜率为,C2点Q处的切线斜率为假设C1点P处的切线与C2在点Q处的切线平行,则k1=k2即,则∴.设,则①令.则因为t>1时,r'(t)>0,所以r(t)在(1,+∞)上单调递增.故r(t)>r(1)=0则.这与①矛盾,假设不成立.故C1在点P处的切线与C2在点Q处的切线不平行.【点评】本题主要考查导数的几何意义,考查导数是运算,以及利用导数研究函数的性质,综合性较强,运算量较大,考查学生的运算能力.21.(本小题满分12分)
已知四面体P—ABCD中,PB平面ABCD,底面ABCD是直角梯形,ABC=BCD=90o,PB=BC=CD=AB.Q是PC上的一点.
(I)求证:平面PAD面PBD;
(II)当Q在什么位置时,PA∥平面QBD?参考答案:22.(本小题满分15分)如图,过点作抛物线的切线,切点A在第二象限.(Ⅰ)求切点A的纵坐标;(Ⅱ)若离心率为的椭圆恰好经过切点A,设切线交椭圆的另一点为B,记切线,OA,OB的斜率分别为,求椭圆方程.参考答案:解:(Ⅰ)设切点,且,由切线的斜率为,得的方程为,又点在上,,即点的纵坐标.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年江西省赣州市高二(下)期末物理试卷(含答案)
- 边防军人知识培训课件
- 机器学习算法在健康保险精算模型中的优化-洞察及研究
- 国产高导热材料在监视器箱散热系统中的替代路径
- 含氟硼酸酯类化合物生物代谢路径与食品安全风险评估的关联性研究
- 反射式筒灯与智能建筑光环境协同控制的算法优化路径
- 反光织带与智能穿戴设备的柔性集成技术瓶颈突破
- 双碳目标下刮板系统余热回收与能源梯级利用技术突破
- 半导体级副门锁芯片在电磁脉冲环境下的自毁保护机制
- 医疗级反射汞灯光谱纯度与生物安全悖论
- 道路工程施工团队职责分工
- 《人工智能:AIGC基础与应用》高职全套教学课件
- 工程造价信息化管理中的问题与发展趋势
- 燃气管道工程竣工资料
- 室性心动过速护理查房
- 2025届上海市(春秋考)高考英语考纲词汇对照表清单
- 教务处精细化常规管理
- 培训课件:医患沟通技巧
- 广东省四校2024-2025学年高三上学期期末联考英语试题(无答案)
- 《解剖学》课程标准
- 2025年新劳动合同范本
评论
0/150
提交评论