




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省无锡市张泾中学2021-2022学年高一数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若等式的解集,则a-b值是(
)A.-10
B.-14
C.10
D.14参考答案:A2.已知集合,若,则等于A.
B.
C.或
D.或参考答案:D略3.A.
B.
C.
D.参考答案:A略4.函数f(x)=log2x+2x-1的零点所在的区间是(
)A.(,)
B.(,)
C.(,1)
D.(1,2)参考答案:C5.函数y=2tan(3x-)的一个对称中心是(
)A.(,0)
B.(,0)
C.(-,0)
D.(-,0)参考答案:C略6.如果,那么下列不等式中正确的是(
). ..
.参考答案:由不等式的性质知:C为正确答案.7.如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟漏完.已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间t(分)的函数关系表示的图象只可能是(
)
A.B.C.D.参考答案:A8.如果函数在区间上单调递减,那么实数的取值范围是(
)A、
B、
C、
D、参考答案:A略9.在△ABC中,角A、B、C的对边分别为a、b、c,若,,则(
)A. B. C. D.参考答案:A【分析】由正弦定理求得sinA,利用同角三角函数的基本关系求得cosA,求出sinB=sin(120°+A)的值,可得
的值.【详解】△ABC中,由正弦定理可得
,∴
,∴sinA=
,cosA=.
sinB=sin(120°+A)=
?+?=
,再由正弦定理可得
=
=
,
故答案为
A.【点睛】本题考查正弦定理,两角和与差的正弦公式的应用,求出sinB是解题的关键,属基础题.10.已知等差数列{an}中,|a3|=|a9|,公差d<0,则使前n项和取最大值的正整数n是
(
)A、4或5
B、5或6
C、6或7
D、8参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.若为的三个内角,则的最小值为_____________.参考答案:略12.某人按如下方法做一次旅行(都在同一个平面上):第一天向东行千米,第二天向南行千米,第三天向西行千米,第四天向北行千米,第五天再向东行千米,第六天再向南行千米,…,如此继续下去,到第四十天结束时,他距第一天出发点的直线距离为
千米.1160参考答案:
1160解:根据题意,第一个四天结束,向西走32-12=4×2米,向北走42-22=6×2米;
第二个四天结束,向西走32-12+72-52=(4+12)×2米,向北走42-22+82-62=(6+14)×2米;依次规律,到第四十天结束时,向西走(4+12+…+76)×2=800米,向北走(6+14+…+78)×2=840米;∴到第四十天结束时,他距第一天出发点的直线距离为=1160千米。13.中,角所对的边分别为,,,,则_______.参考答案:略14.已知,则______,______.参考答案:;【分析】根据,将分子分母同除以,利用商数关系求解.先利用“1”的代换,将的分母换为“”,得到,再分子分母同除以,利用商数关系求解【详解】因为,所以.,.故答案为:;;【点睛】本题主要考查同角三角函数基本关系式,还考查了运算求解的能力,属于中档题.15.已知数列{an}的通项公式an=,若前n项和为6,则n=_________.参考答案:4816.log59?log225?log34=.参考答案:8【考点】对数的运算性质.【专题】计算题;函数思想;数学模型法;函数的性质及应用.【分析】利用换底公式化简求解即可.【解答】解:log59?log225?log34==8.故答案为:8.【点评】本题考查对数运算法则的应用,换底公式的应用,考查计算能力.17.已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是.参考答案:(3,+∞)【考点】根的存在性及根的个数判断.【分析】作出函数f(x)=的图象,依题意,可得4m﹣m2<m(m>0),解之即可.【解答】解:当m>0时,函数f(x)=的图象如下:∵x>m时,f(x)=x2﹣2mx+4m=(x﹣m)2+4m﹣m2>4m﹣m2,∴y要使得关于x的方程f(x)=b有三个不同的根,必须4m﹣m2<m(m>0),即m2>3m(m>0),解得m>3,∴m的取值范围是(3,+∞),故答案为:(3,+∞).三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{cn}为等比数列,c1=1,且c2S2=64,c3S3=960.(1)求an与cn;(2)求++…+.参考答案:【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【分析】(1)设等差数列{an}的公差为d>0,等比数列{bn}的公比为q,由a1=3,b1=1,且b2S2=64,b3S3=960.可得q(6+d)=64,q2(9+3d)=960,解得d,q.即可得出.(2)由(1)可得:Sn=n(n+2).可得==(﹣),利用“裂项求和”与数列的单调性即可得出答案.【解答】解:(1)设{an}的公差为d,{cn}的公比为q,则d为正整数,an=3+(n﹣1)d,cn=qn﹣1,依题意有,①解得,或,(舍去)故an=3+2(n﹣1)=2n+1,cn=8n﹣1,数列an=2n+1,cn=8n﹣1;(2)Sn=3+5+…+(2n+1)=n(n+2),==(﹣),++…+=(1﹣)+(﹣)+…+(﹣),=(1﹣+﹣+…+﹣),=(1+﹣﹣),=﹣,∴++…+=﹣.【点评】本题考查了等差数列与等比数列的通项公式与求和公式、“裂项求和”与数列的单调性,考查了推理能力与计算能力,属于中档题.19.已知直线恒过定点P,圆C经过点和定点P,且圆心在直线上.(1)求圆C的方程;(2)已知点P为圆C直径的一个端点,若另一端点为点Q,问y轴上是否存在一点,使得为直角三角形,若存在,求出的值;若不存在,说明理由.参考答案:(1);(2)见解析【分析】(1)先求出直线过定点,设圆的一般方程,由题意列方程组,即可求圆的方程;(2)由(1)可知:求得直线的斜率,根据对称性求得点坐标,由在圆外,所以点不能作为直角三角形的顶点,分类讨论,即可求得的值.【详解】(1)直线的方程可化为,由解得∴定点的坐标为.设圆的方程为,则圆心则依题意有解得∴圆的方程为;(2)由(1)知圆的标准方程为,∴圆心,半径.∵是直径的两个端点,∴圆心是与的中点,∵轴上的点在圆外,∴是锐角,即不是直角顶点.若是的直角顶点,则,得;
若是的直角顶点,则,得.
综上所述,在轴上存在一点,使为直角三角形,或.【点睛】本题考查圆的方程的求法,直线与圆的位置关系,考查分类讨论思想,属于中档题.20.设函数f(x)=log2(4x)?log2(2x),且x满足4﹣17x+4x2≤0,求f(x)的最值,并求出取得最值时,对应f(x)的值.参考答案:【考点】函数的最值及其几何意义.【分析】化简函数的表达式,利用换元法,结合二次函数的最值求解即可.【解答】解:f(x)=(log2x+log24)(log2x+log22)=(log2x+2)(log2x+1)=logx+3log2x+2,设log2x=t,∴y=t2+3t+2=(t+)2﹣(﹣2≤t≤2)当t=﹣,即log2x=﹣,x=2﹣=时,f(x)min=﹣当t=2即log2x=2,x=4时,f(x)max=12.21.(本题满分10分)已知向量,,,点A、B为函数的相邻两个零点,.(Ⅰ)求的值;
(Ⅱ)若,,求的值;参考答案:(Ⅰ);(Ⅱ)22.在如图所示的空间几何体中,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在∠ABC的平分线上.(1)求证:DE∥平面ABC;(2)求多面体ABCDE的体积.参考答案:(1)证明:由题意知,△ABC,△ACD都是边长为2的等边三角形,取AC中点O,连接BO,DO,则BO⊥AC,DO⊥AC.∵平面ACD⊥平面ABC,∴DO⊥平面ABC,作EF⊥平面ABC,那么EF∥DO,根据题意,点F落在BO上,∴∠EBF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年航空运输辅助活动行业研究报告及未来行业发展趋势预测
- 2025年冻冷草莓加工行业研究报告及未来行业发展趋势预测
- 饭店水电知识培训课件
- 对抗性测试环境下反向测试件的动态失效边界研究
- 多频振动环境下刹车蹄块疲劳寿命预测模型的数字孪生构建
- 多相流条件下清洗喷嘴雾化效能与能耗的耦合关系研究
- 多尺度模拟揭示的分子振动模式与反应路径耦合
- 多参数交叉干扰下的自适应校准算法优化研究
- 基于机器视觉的装配过程质量追溯系统在复杂工况下的抗干扰能力提升策略
- 基于数字孪生的刹车组件全生命周期可靠性预测
- T-JSQX 0016-2024 无人驾驶配送装备通.用技术要求
- 船舶碰撞应急预案
- 廉洁征兵培训课件
- 科技前沿下的生物医药研发实验室创新研究
- 《铝及铝合金》课件
- 产品功能与使用说明手册
- 《颅骨骨折》课件
- 整体施工劳务服务方案
- DBJT13-119-2010 福建省住宅工程质量分户验收规程
- GB/Z 45115-2024太阳能光热发电站直接与间接式主动显热储热系统特性
- 弹性延迟退休协议书示范文本
评论
0/150
提交评论