辽宁省鞍山市矿山高级中学2022-2023学年高二数学文月考试卷含解析_第1页
辽宁省鞍山市矿山高级中学2022-2023学年高二数学文月考试卷含解析_第2页
辽宁省鞍山市矿山高级中学2022-2023学年高二数学文月考试卷含解析_第3页
辽宁省鞍山市矿山高级中学2022-2023学年高二数学文月考试卷含解析_第4页
辽宁省鞍山市矿山高级中学2022-2023学年高二数学文月考试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省鞍山市矿山高级中学2022-2023学年高二数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.四面体的顶点和各棱的中点共10个点.在这10点中取4个不共面的点,则不同的取法种数是(

)A.141 B.144 C.150 D.155参考答案:A

略2.5名学生相约第二天去春游,本着自愿的原则,规定任何人可以“去”或“不去”,则第二天可能出现的不同情况的种数为()A.C

B.25

C.52

D.A参考答案:B3.题中程序语句输出的结果是(

A、1,2,1

B、1,2,2

C、2,1,2

D、2,1,1

参考答案:C4.复数的虚部是(A)

(B)-1

(C)

(D)1参考答案:C5.函数在x=处有极值,则a=(

)(A)-2

(B)0

(C)

(D)2参考答案:D略6.命题“所有能被2整除的数都是偶数”的否定是A.有不能被2整除的数都是偶数B.有能被2整除的数都不是偶数C.在一个不能被2整除的数都是偶数D.在一个能被2整除的数都不是偶数参考答案:D7.已知数列{an}的前n项和为,令,记数列{bn}的前n项为Tn,则T2015=()A.﹣2011 B.﹣2012 C.﹣2013 D.﹣2014参考答案:D【考点】数列的求和.【专题】等差数列与等比数列;三角函数的图像与性质.【分析】利用“当n=1时,a1=S1.当n≥2时,an=Sn﹣Sn﹣1”可得an,于是=2(n﹣1)?cos.由于函数y=cos的周期T==4.利用周期性和等差数列的前n项和公式即可得出.【解答】解:由数列{an}的前n项和Sn=n2﹣n,当n=1时,a1=S1=1﹣1=0.当n≥2时,an=Sn﹣Sn﹣1=n2﹣n﹣[(n﹣1)2﹣(n﹣1)]=2n﹣2.上式对于n=1时也成立.∴an=2n﹣2.∴=2(n﹣1)?cos.∵函数y=cos的周期T==4.∴T2015=(b1+b5+…+b2009)+(b2+b6+…+b2010)+(b3+b7+…+b2011)+(b4+b8+…+b2012)+b2013+b2014+b2015=0﹣2(1+5+…+2009)+0+2(3+7+…+2011)+4024?cos+4026?cos+4028?cos=4×503+0﹣4026=﹣2014.故选D.【点评】本题考查了利用“当n=1时,a1=S1.当n≥2时,an=Sn﹣Sn﹣1”求an、余弦函数的周期性、等差数列的通项公式与前n项和公式,考查了推理能力和计算能力,属于难题.8.下列关于用斜二测画法画直观图的说法中,错误的是(

)A用斜二测画法画出的直观图是在平行投影下画出的空间图形B几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C水平放置的矩形的直观图是平行四边形D水平放置的圆的直观图是椭圆参考答案:B9.复数的虚部为(

)A.-2 B.5 C.-5 D.-5i参考答案:C【分析】利用复数除法运算求得,根据虚部定义得到结果.【详解】

的虚部为:本题正确选项:C【点睛】本题考查复数虚部的求解,涉及到复数的除法运算,属于基础题.10.命题“存在x0∈R,2≤0”的否定是()A.不存在x0∈R,2>0 B.存在x0∈R,2≥0C.对任意的x∈R,2x≤0 D.对任意的x∈R,2x>0参考答案:D【考点】特称命题;命题的否定.【专题】简易逻辑.【分析】根据特称命题的否定是全称命题,直接写出该命题的否定命题即可.【解答】解:根据特称命题的否定是全称命题,得;命题“存在x0∈R,2≤0”的否定是“对任意的x∈R,都有2x>0”.故选:D.【点评】本题考查了全称命题与特称命题的应用问题,解题时应根据特称命题的否定是全称命题,写出答案即可,是基础题.二、填空题:本大题共7小题,每小题4分,共28分11.正六边形的对角线的条数是

,正边形的对角线的条数是

(对角线指不相邻顶点的连线段)。参考答案:9,略12.若曲线:与曲线:有四个不同的交点,则实数m的取值范围是

.参考答案:(,0)∪(0,)略13.若函数的图象在点(0,0)处的切线方程为_______.参考答案:【分析】求出导函数,根据导函数得切线斜率,即可求得切线方程.【详解】,,即函数的图象在点处的切线斜率为1,所以切线方程为:.故答案为:【点睛】此题考查导数的几何意义,根据导函数求函数在某点处的切线方程,关键在于准确求出导函数.14.用红、黄、蓝三种颜色涂四边形ABCD的四个顶点,要求相邻顶点的颜色不同,则不同的涂色方法共有_________种.参考答案:18【分析】先对顶点涂色有3种颜色可供选择,接着顶点有2种颜色可供选择,对顶点颜色可供选择2种颜色分类讨论,分为与同色和不同色情况,即可得到顶点涂色情况,即可求解.【详解】如果同色涂色方法有,如果不同色涂色方法有,所以不同的涂色方法有种.故答案为:18.【点睛】本题考查染色问题、分步乘法原理和分类加法原理,注意限制条件,属于基础题.15.在中,已知,若分别是角所对的边,则的最小值为__▲

_.参考答案:【知识点】正弦定理、余弦定理、基本不等式【答案解析】解析:解:因为,由正弦定理及余弦定理得,整理得,所以,当且仅当a=b时等号成立.即的最小值为.【思路点拨】因为寻求的是边的关系,因此可分别利用正弦定理和余弦定理把角的正弦和余弦化成边的关系,再利用基本不等式求最小值.16.函数在上的最小值为则的取值范围为_____参考答案:略17.如图,某建筑工地搭建的脚手架局部类似于一个2×2×3

的长方体框架,一个建筑工人欲从

A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为______________.参考答案:?【分析】先求出最近路线的所有走法共有种,再求出不连续向上攀登的次数,然后可得概率.【详解】最近的行走路线就是不走回头路,不重复,所以共有种,向上攀登共需要3步,向右向前共需要4步,因为不连续向上攀登,所以向上攀登的3步,要进行插空,共有种,故所求概率为.【点睛】本题主要考查古典概率的求解,明确事件包含的基本事件种数是求解关键,侧重考查数学建模和数学运算的核心素养.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分14分)如图,四面体ABCD中,O、E分别是BD、BC的中点,(I)求证:平面BCD;(II)求点E到平面ACD的距离.参考答案:(I)证明:连结OC在中,由已知可得而即 平面(II)解:设点E到平面ACD的距离为在中,而点E到平面ACD的距离为19.如图,棱柱ABCD﹣A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°.(Ⅰ)证明:BD⊥AA1;(Ⅱ)求二面角D﹣A1A﹣C的平面角的余弦值;(Ⅲ)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.参考答案:【考点】二面角的平面角及求法;直线与平面平行的性质.【专题】综合题;空间位置关系与距离.【分析】法一:(Ⅰ)连接BD交AC于O,则BD⊥AC,连接A1O,可证A1O⊥底面ABCD,从而建立空间直角坐标系,求出向量的坐标,证明向量的数量积为0即可得到BD⊥AA1;(Ⅱ)确定平面AA1C1C、平面AA1D的法向量,利用向量的夹角公式,可求二面角D﹣A1A﹣C的平面角的余弦值;(Ⅲ)解:假设在直线CC1上存在点P,使BP∥平面DA1C1,求出平面DA1C1的法向量,利用数量积为0,即可求得结论.法二:(Ⅰ)先证明BD⊥平面AA1O,即可证得AA1⊥BD;(Ⅱ)过O作OE⊥AA1于E点,连接OE,则∠DEO为二面角D﹣AA1﹣C的平面角,求出OE、DE,即可求得二面角D﹣A1A﹣C的平面角的余弦值;(Ⅲ)存在这样的点P,连接B1C,在C1C的延长线上取点P,使C1C=CP,连接BP,可得四边形BB1CP为平行四边形,进而利用线面平行的判定可得结论.【解答】法一:(Ⅰ)证明:连接BD交AC于O,则BD⊥AC,连接A1O,在△AA1O中,AA1=2,AO=1,∠A1AO=60°∴A1O2=AA12+AO2﹣2AA1?Aocos60°=3∴AO2+A1O2=A12∴A1O⊥AO,∵平面AA1C1C⊥平面ABCD,平面AA1C1C∩平面ABCD=AO∴A1O⊥底面ABCD∴以OB、OC、OA1所在直线为x轴、y轴、z轴建立如图所示空间直角坐标系,则A(0,﹣1,0),B(,0,0),C(0,1,0),D(﹣,0,0),A1(0,0,)

…∵,,∴∴BD⊥AA1…(Ⅱ)解:∵OB⊥平面AA1C1C,∴平面AA1C1C的法向量设⊥平面AA1D,,则由得到,∴…∴所以二面角D﹣A1A﹣C的平面角的余弦值是…(Ⅲ)解:假设在直线CC1上存在点P,使BP∥平面DA1C1设,则得…设⊥平面DA1C1,,则由得到,∴…又因为平面DA1C1,则?,∴,∴λ=﹣1即点P在C1C的延长线上且使C1C=CP

…(13分)法二:(Ⅰ)证明:过A1作A1O⊥AC于点O,由于平面AA1C1C⊥平面ABCD,由面面垂直的性质定理知,A1O⊥平面ABCD,∴A1O⊥BD又底面为菱形,所以AC⊥BD∵A1O∩AC=O∴BD⊥平面AA1O∵AA1?平面AA1O∴AA1⊥BD…(Ⅱ)解:在△AA1O中,A1A=2,∠A1AO=60°,∴AO=AA1?cos60°=1所以O是AC的中点,由于底面ABCD为菱形,所以O也是BD中点由(Ⅰ)可知DO⊥平面AA1C过O作OE⊥AA1于E点,连接OE,则AA1⊥DE,故∠DEO为二面角D﹣AA1﹣C的平面角

…在菱形ABCD中,AB=2,∠ABC=60°∴AC=AB=BC=2,∴AO=1,DO=在Rt△AEO中,OE=OA?sin∠EAO=DE=∴cos∠DEO=∴二面角D﹣A1A﹣C的平面角的余弦值是…(Ⅲ)解:存在这样的点P,连接B1C,∵A1B1ABDC,∴四边形A1B1CD为平行四边形,∴A1D∥B1C在C1C的延长线上取点P,使C1C=CP,连接BP

…∵B1BCC1,…∴BB1CP∴四边形BB1CP为平行四边形∴BP∥B1C,∴BP∥A1D∵BP?平面DA1C1,A1D?平面DA1C1,∴BP∥平面DA1C1

…(13分)【点评】本题考查线面位置关系,考查面面角,解题的关键是掌握线面平行、垂直的判定方法,正确作出面面角,考查利用向量方法解决立体几何问题,属于中档题.20.设动点到定点的距离比它到轴的距离大1,记点的轨迹为曲线.(1)求点的轨迹方程;(2)设圆过,且圆心在曲线上,是圆在轴上截得的弦,试探究当运动时,弦长是否为定值?为什么?参考答案:

21.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD(Ⅱ)设PD=AD=1,求棱锥D﹣PBC的高.参考答案:【考点】直线与平面垂直的性质;棱柱、棱锥、棱台的体积.【分析】(Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得BD=,利用勾股定理证明BD⊥AD,根据PD⊥底面ABCD,易证BD⊥PD,根据线面垂直的判定定理和性质定理,可证PA⊥BD;(II)要求棱锥D﹣PBC的高.只需证BC⊥平面PBD,然后得平面PBC⊥平面PBD,作DE⊥PB于E,则DE⊥平面PBC,利用勾股定理可求得DE的长.【解答】解:(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD.(II)解:作DE⊥PB于E,已知PD⊥底面ABCD,则PD⊥BC,由(I)知,BD⊥AD,又BC∥AD,∴BC⊥BD.故BC⊥平面PBD,BC⊥DE,则DE⊥平面PBC.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论