




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新高考数学的平面向量多选题含解析一、平面向量多选题1.已知向量,,设函数,则下列关于函数的性质的描述正确的是()A.的最大值为 B.的周期为C.的图象关于点对称 D.在上是增函数【答案】ABD【分析】运用数量积公式及三角恒等变换化简函数,根据性质判断.【详解】解:,当,时,的最大值为,选项A描述准确;的周期,选项B描述准确;当时,,所以的图象关于点对称,选项C描述不准确;当时,,所以在上是增函数,选项D描述准确.故选:ABD.【点睛】本题考查三角恒等变换,正弦函数的图象与性质,属于中档题.2.已知边长为4的正方形的对角线的交点为,以为圆心,6为半径作圆;若点在圆上运动,则()A. B.C. D.【答案】BC【分析】以为坐标原点,线段,的垂直平分线分别为、轴建立平面直角坐标系,再利用向量坐标的线性运算以及向量数量积的坐标运算即可求解.【详解】作出图形如图所示,以为坐标原点,线段,的垂直平分线分别为、轴建立平面直角坐标系;观察可知,,,,,设,则,故,,,故,故,.故选:BC3.数学家欧拉在年提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点、、分别是的外心、重心、垂心,且为的中点,则()A. B.C. D.【答案】ABD【分析】向量的线性运算结果仍为向量可判断选项A;由可得,利用向量的线性运算,再结合集合判断选项B;利用故选项C不正确,利用外心的性质可判断选项D,即可得正确选项.【详解】因为是的重心,是的外心,是的垂心,且重心到外心的距离是重心到垂心距离的一半,所以,对于选项A:因为是的重心,为的中点,所以,又因为,所以,即,故选项A正确;对于选项B:因为是的重心,为的中点,所以,,因为,所以,,即,故选项B正确;对于选项C:,故选项C不正确;对于选项D:设点是的外心,所以点到三个顶点距离相等,即,故选项D正确;故选:ABD.【点睛】关键点点睛:本题解题的关键是利用已知条件得,利用向量的线性运算结合可得出向量间的关系.4.如图,B是的中点,,P是平行四边形内(含边界)的一点,且,则下列结论正确的为()A.当时,B.当P是线段的中点时,,C.若为定值1,则在平面直角坐标系中,点P的轨迹是一条线段D.的最大值为【答案】BCD【分析】利用向量共线的充要条件判断出A错,C对;利用向量的运算法则求出,求出,判断出B对,过作,交于,作,交的延长线于,则,然后可判断出D正确.【详解】当时,,则在线段上,故,故A错当是线段的中点时,,故B对为定值1时,,,三点共线,又是平行四边形内(含边界)的一点,故的轨迹是线段,故C对如图,过作,交于,作,交的延长线于,则:;又;,;由图形看出,当与重合时:;此时取最大值0,取最小值1;所以取最大值,故D正确故选:BCD【点睛】结论点睛:若,则三点共线.5.如图,已知长方形中,,,,则下列结论正确的是()A.当时,B.当时,C.对任意,不成立D.的最小值为4【答案】BCD【分析】根据题意,建立平面直角坐标系,由,根据向量坐标的运算可得,当时,得出,根据向量的线性运算即向量的坐标运算,可求出,即可判断A选项;当时,,根据平面向量的夹角公式、向量的数量积运算和模的运算,求出,即可判断B选项;若,根据向量垂直的数量积运算,即可判断C选项;根据向量坐标加法运算求得,再根据向量模的运算即可判断D选项.【详解】解:如图,以为坐标原点,所在直线分别为轴、轴建立平面直角坐标系,则,,,,由,可得,A项,当时,,则,,设,又,所以,得,故,A错误;B项,当时,,则,,故,B正确;C项,,,若,则,对于方程,,故不存在,使得,C正确;D项,,所以,当且仅当时等号成立,D正确.故选:BCD.【点睛】关键点点睛:本题考查平面向量的坐标运算,数量积运算和线性运算,考查运用数量积表示两个向量的夹角以及会用数量积判断两个平面向量的垂直关系,熟练运用平面向量的数量积运算是解题的关键.6.在平行四边形中,,,,交于F且,则下列说法正确的有()A. B.C. D.【答案】BCD【分析】根据向量的线性运算,以及向量的夹角公式,逐一判断四个选项的正误即可得正确选项.【详解】对于选项A:,故选项A不正确;对于选项B:易证,所以,所以,故选项B正确;对于选项C:,即,所以,所以,解得:,,因为,所以,故选项C正确;对于选项D:,故选项D正确.故选:BCD【点睛】关键点点睛:选项B的关键点是能得出,即可得,选项D的关键点是由于和的模长和夹角已知,故将和用和表示,即可求出数量积.7.下列说法中错误的为()A.已知,,且与的夹角为锐角,则实数的取值范围是B.向量,不能作为平面内所有向量的一组基底C.若,则在方向上的投影为D.非零向量和满足,则与的夹角为60°【答案】ACD【分析】由向量的数量积、向量的投影、基本定理与向量的夹角等基本知识,逐个判断即可求解.【详解】对于A,∵,,与的夹角为锐角,∴,且(时与的夹角为0),所以且,故A错误;对于B,向量,即共线,故不能作为平面内所有向量的一组基底,B正确;对于C,若,则在方向上的正射影的数量为,故C错误;对于D,因为,两边平方得,则,,故,而向量的夹角范围为,得与的夹角为30°,故D项错误.故错误的选项为ACD故选:ACD【点睛】本题考查平面向量基本定理及向量的数量积,向量的夹角等知识,对知识广度及准确度要求比较高,中档题.8.已知数列{an},,,在平面四边形ABCD中,对角线AC与BD交于点E,且,当n≥2时,恒有,则()A.数列{an}为等差数列 B.C.数列{an}为等比数列 D.【答案】BD【分析】证明,所以选项B正确;设(),易得,显然不是同一常数,所以选项A错误;数列{}是以4为首项,4为公比的等比数列,所以,所以选项D正确,易得,选项C不正确.【详解】因为,所以,所以,所以,所以选项B正确;设(),则当n≥2时,由,所以,所以,,所以,易得,显然不是同一常数,所以选项A错误;因为-=4,,所以数列{}是以4为首项,4为公比的等比数列,所以,所以选项D正确,易得,显然选项C不正确.故选:BD【点睛】本题主要考查平面向量的线性运算,考查等比数列等差数列的判定,考查等比数列通项的求法,意在考查学生对这些知识的理解掌握水平.9.下列各式结果为零向量的有()A. B.C. D.【答案】CD【分析】对于选项,,所以该选项不正确;对于选项,,所以该选项不正确;对于选项,,所以该选项正确;对于选项,,所以该选项正确.【详解】对于选项,,所以该选项不正确;对于选项,,所以该选项不正确;对于选项,,所以该选项正确;对于选项,,所以该选项正确.故选:CD【点睛】本题主要考查平面向量的加法和减法法则,意在考查学生对这些知识的理解掌握水平.10.设、是两个非零向量,则下列描述正确的有()A.若,则存在实数使得B.若,则C.若,则在方向上的投影向量为D.若存在实数使得,则【答案】AB【分析】根据向量模的三角不等式找出和的等价条件,可判断A、C、D选项的正误,利用平面向量加法的平行四边形法则可判断B选项的正误.综合可得出结论.【详解】当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高校神考试题及答案
- 小儿克罗恩病的临床护理
- 建筑公司年度安全教育培训工作总结模版
- 小汗腺痣的临床护理
- 关于教练薪资提成协议书
- 中通快递运输合同范本
- 外包厂房安全管理协议书
- 鲜白术买卖合同范本
- 在建房屋买卖合同范本
- 委托代持协议终止协议书
- 校园食品安全智慧化建设与管理规范
- DL-T5704-2014火力发电厂热力设备及管道保温防腐施工质量验收规程
- 检验科事故报告制度
- 分包合同模板
- 中西文化鉴赏智慧树知到期末考试答案章节答案2024年郑州大学
- 英语定位纸模板
- eras在妇科围手术
- 价格认定规定培训课件
- 创业计划书九大要素
- 《肺癌的诊治指南》课件
- 2024年江苏盐城燕舞集团有限公司招聘笔试参考题库含答案解析
评论
0/150
提交评论