




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省宿州市第四中学高二数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.集合若,则(
) A. B. C. D.参考答案:D2.若,则sin(π+2α)=()A. B. C. D.参考答案:A【考点】GS:二倍角的正弦.【分析】利用两角差的正弦函数公式化简已知等式,得:(cosα﹣sinα)=,两边平方后,利用二倍角公式可求sin2α的值,进而利用诱导公式化简所求即可得解.【解答】解:∵,可得:(cosα﹣sinα)=,∴两边平方可得:1﹣2sinαcosα=,解得:sin2α=,∴sin(π+2α)=﹣sin2α=﹣.故选:A.3.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=3,则|QF|=()A. B. C.3 D.6参考答案:B【考点】K8:抛物线的简单性质.【分析】通过抛物线的图象,利用抛物线的定义以及=3,求解即可.【解答】解:如下图所示,抛物线C':B的焦点为(2,0),准线为x=﹣2,准线与x轴的交点为N,P过点Q作准线的垂线,垂足为M,由抛物线的定义知:|MQ|=|QF|,又因为=3,所以,3|MQ|=|PF|,所以,,可得:|MQ|=4×=.所以,.故选:B.【点评】本题考查抛物线的简单性质的应用,抛物线的定义的应用,考查计算能力以及转化思想的应用.4.若向量与的夹角的余弦值为,则(
)A. B. C.或 D.2或参考答案:C5.将一根长为3米的绳子在任意位置剪断,则剪得两段的长度都不小于1米的概率是()A. B. C. D.参考答案:A【考点】几何概型.【分析】根据题意确定为几何概型中的长度类型,将长度为3m的绳子分成相等的三段,在中间一段任意位置剪断符合要求,从而找出中间1m处的两个界点,再求出其比值.【解答】解:记“两段的长都不小于1m”为事件A,则只能在中间1m的绳子上剪断,才使得剪得两段的长都不小于1m,所以由几何概型的公式得到事件A发生的概率P(A)=.故选:A.6.若圆的方程为(θ为参数),直线的方程为(t为参数),则直线与圆的位置关系是(
)A.相离 B.相交 C.相切 D.不能确定参考答案:B【分析】先求出圆和直线的普通方程,再判断直线与圆的位置关系得解.【详解】由题得圆的方程为,它表示圆心为原点,半径为1的圆.直线的方程为x-y-2=0,所以圆心到直线的距离,所以直线和圆相交,故选:B【点睛】本题主要考查参数方程和普通方程的互化,考查直线和圆的位置关系的判断,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.记Ⅰ为虚数集,设,,则下列类比所得的结论正确的是(
)A.由,类比得B.由,类比得C.由,类比得D.由,类比得参考答案:C8.在△ABC中,角A、B、C所对的边分别为,且,则△ABC的形状是(
)A.
等边三角形
B.直角三角形
C.等腰三角形
D.等腰直角三角形参考答案:B略9.已知定义在上的函数,则曲线在点处的切线方程是
(
)A.
B.
C. D.参考答案:A10.已知集合,下列结论成立的是(
)A.NM
B.M∪N=M
C.M∩N=N
D.M∩N={2}参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.对于命题:,则是
.参考答案:12.设等比数列{an}的前n项和为Sn,若27a3﹣a6=0,则=.参考答案:28【考点】等比数列的通项公式.【分析】设出等比数列的首项和公比,由已知求出公比,代入等比数列的前n项和得答案.【解答】解:设等比数列{an}的首项为a1,公比为q,由27a3﹣a6=0,得27a3﹣a3q3=0,即q=3,∴=.故答案为:28.13.设f(x)=﹣x3+x2+2ax,若f(x)在(,+∞)上存在单调递增区间,则a的取值范围是
.参考答案:a>
【考点】利用导数研究函数的单调性.【分析】函数f(x)在(,+∞)上存在单调递增区间,即f′(x)>0在(,+∞)上有解,只需f′()>0即可,根据一元二次函数的性质即可得到结论.【解答】解:∵,∴函数的导数为f′(x)=﹣x2+x+2a,若函数f(x)在(,+∞)上存在单调递增区间,即f′(x)>0在(,+∞)上有解∵f′(x)=﹣x2+x+2a,∴只需f′()>0即可,由f′()=﹣++2a=2a+>0,解得a>,故答案为:a>.14.某射击运动员在四次射击中打出了10,x,9,8环的成绩,已知这组数据的平均数为9,则这则数据的方差是
.参考答案:15.已知函数是定义在上的偶函数,若方程恰有两个实根,
则实数的取值范围是
▲
.参考答案:略16.为椭圆上的点,是其两个焦点,若,则的面积是
▲
.参考答案:略17.给定两个命题P:对任意实数x都有ax2+ax+1>0恒成立;Q:关于x的方程x2-x+a=0有实数根.如果P∧Q为假命题,P∨Q为真命题,求实数a的取值范围.参考答案:解:命题P:对任意实数x都有ax2+ax+1>0恒成立,则“a=0”,或“a>0且a2-4a<0”.解得0≤a<4.命题Q:关于x的方程x2-x+a=0有实数根,则Δ=1-4a≥0,得a≤.因为P∧Q为假命题,P∨Q为真命题,则P,Q有且仅有一个为真命题,故綈P∧Q为真命题,或P∧綈Q为真命题,则或解得a<0或<a<4.所以实数a的取值范围是(-∞,0)∪(,4).
略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知实数a,b满足:关于x的不等式|x2+ax+b|≤|2x2-4x-16|对一切x∈R均成立
(1)验证a=-2,b=-8满足题意;(2)求出满足题意的实数a,b的值,并说明理由;
(3)若对一切x>2,都有不等式x2+ax+b≥(m+2)x-m-15成立,求实数m的取值范围。参考答案:解析:(1)当a=-2,b=-8时,所给不等式左边=x2+ax+b|=|x2-2x-8|≤2|x2-2x-8|=|2x2-4x-16|=右边
∴此时所给不等式对一切x∈R成立
(2)注意到2x2-4x-16=0x2-2x-8=0(x+2)(x-4)=0x=-2或x=4∴当x=-2或x=4时|2x2-4x-16|=0
∴在不等式|x2+ax+b|≤|2x2-4x-16|中分别取x=-2,x=4得
又注意到(1)知当a=-2,b=-8时,所给不等式互对一切xR均成立。∴满足题意的实数a,b只能a=-2,b=-8一组
(3)由已知不等式x2-2x-8≥(m+2)x-m-15对一切x>2成立x2-4x+7≥m(x-1)对一切x>2成立①
令②则(1)m≤g(x)的最小值
又当x>2时,x-1>0
(当且仅当时等号成立)
∴g(x)的最小值为6(当且仅当x=3时取得)③∴由②③得m≤2∴所求实数m的取值范围为(-∞,2]
19.(本题12分)已知函数(1)当=2时,求的零点;(2)若是的极值点,求的[1,]上的最小值和最大值;(3)若在上是增函数,求实数的取值范围.参考答案:解:(1)的零点为0,3,-1.(2)是的极值点a=4
f(x)在递减,递增f(1)=-6,f(3)=-18,f(4)=-12最小值为-18,最大值为-6(3)在上是增函数恒成立记略20.从扬州中学参加2018年全国高中数学联赛预赛的500名同学中,随机抽取若干名同学,将他们的成绩制成频率分布表,下面给出了此表中部分数据.(1)根据表中已知数据,你认为在①、②、③处的数值分别为
▲
,
▲
,
▲
.(2)补全在区间[70,140]上的频率分布直方图;(3)若成绩不低于110分的同学能参加决赛,那么可以估计该校大约有多少学生能参加决赛?
分组
频数
频率[70,80)
0.08[80,90)
0.10[90,100)
③[100,110)
16
①[110,120)
0.08[120,130)
②
0.04[130,140]
0.02合计
50
参考答案:解:(1)0.32;2;0.36
(2)如图.
(3)在随机抽取的50名同学中有7名出线,.
答:在参加的500名中大概有70名同学出线.
21.已知椭圆C:=1(a>b>0)的短半轴长为1,离心率为(1)求椭圆C的方程(2)直线l与椭圆C有唯一公共点M,设直线l的斜率为k,M在椭圆C上移动时,作OH⊥l于H(O为坐标原点),当|OH|=|OM|时,求k的值.参考答案:【考点】椭圆的简单性质.【分析】(1)由题意可知:b=1,e==,a2=b2+c2,则a=2,即可求得椭圆C的方程;(2)设直线l:y=kx+m,代入椭圆方程,令△=0,得m2=4k2+1,由韦达定理可知:2x0=﹣,x02=,则OM丨2=x02+y02=,|OH|2==,由|OH|=|OM|,即可求得k的值.【解答】解:(1)椭圆C:=1(a>b>0)焦点在x轴上,由题意可知b=1,由椭圆的离心率e==,a2=b2+c2,则a=2∴椭圆的方程为;﹣﹣﹣﹣﹣﹣﹣(2)设直线l:y=kx+m,M(x0,y0).﹣﹣﹣﹣﹣﹣﹣,整理得:(1+4k2)x2+8kmx+4m2﹣4=0,﹣﹣﹣﹣﹣﹣﹣令△=0,得m2=4k2+1,﹣﹣﹣﹣﹣﹣﹣由韦达定理得:2x0=﹣,x02=,﹣﹣﹣﹣﹣﹣﹣∴丨OM丨2=x02+y02=x02+(kx+m)2=①﹣﹣﹣﹣﹣﹣﹣又|OH|2==,②﹣﹣﹣﹣﹣﹣﹣由|OH|=|OM|,①②联立整理得:16k4﹣8k2+1=0﹣﹣﹣﹣﹣﹣﹣∴k2=,解得:k=±,k的值±.﹣﹣﹣﹣﹣﹣﹣22.在平面直角坐标系xOy中,直线l的参数方程为(t为参数,),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,线C的极坐标方程是.(1)求直线l的普通方程和曲线C的直角坐标方程;(2)己知直线l与曲线C交于A、B两点,且,求实数a的值.参考答案:(1)l的普通方程;C的直角坐标方程是;(2)【分析】(1)把直线l的标准参数方程中的t消掉即可得到直线的普通方程,由曲线C的极坐标方程为ρ=2si
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 影响微生物降解因素
- 油气勘探大数据分析技术
- 英语六年级上第二单元教学设计
- 企业团队建设课件
- 水电造价管理方案
- 餐饮连锁企业部分股权出售合同
- 金融科技公司财务数据保密及知识产权保护协议
- 工厂拆除现场管理方案
- 文化教育产业区域代理商授权合同
- 项目定制方案模板(3篇)
- 贵州贵阳银行招聘笔试(六盘水地区)上岸提分题库3套【500题带答案含详解】
- 社区获得性肺炎的护理查房
- 消防安装工程监理细则样本
- GA/T 966-2011物证的封装要求
- FZ/T 64078-2019熔喷法非织造布
- 日常生活活动能力评估大全
- 第2课《说和做》课件(共30张ppt) 部编版语文七年级下册
- 数独题目大全及答案
- 个人简历电子版
- 超外差收音机实习报告2000字
- 红色简约大方万人计划青年人才答辩PPT模板
评论
0/150
提交评论