




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古自治区呼和浩特市曙光学校2021-2022学年高一数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知在数列{an}中,a1=2,a2=5,且,则=()A.13
B.15
C.17
D.19参考答案:D2.若ax2+bx+c>0的解集为(﹣∞,﹣2)∪(4,+∞),则对f(x)=ax2+bx+c,有()A.f(5)<f(2)<f(﹣1) B.f(2)<f(5)<f(﹣1) C.f(﹣1)<f(2)<f(5) D.f(2)<f(﹣1)<f(5)参考答案:D【考点】75:一元二次不等式的应用.【分析】由已知,可知﹣2,4是ax2+bx+c=0的两根,由根与系数的关系,得出,化函数f(x)=ax2+bx+c=ax2﹣2ax﹣8a=a(x2﹣2x﹣8),利用二次函数图象与性质求解.【解答】解:ax2+bx+c>0的解集为(﹣∞,﹣2)∪(4,+∞),可知﹣2,4是ax2+bx+c=0的两根,由根与系数的关系,所以且a>0,所以,函数f(x)=ax2+bx+c=ax2﹣2ax﹣8a=a(x2﹣2x﹣8),抛物线对称轴为x=1,开口向上,所以f(2)<f(﹣1)<f(5)故选D.【点评】本题为一元二次不等式的解集的求解,结合对应二次函数的图象是解决问题的关键,属基础题.3.已知,若函数在上既是奇函数,又是增函数,则函数的图像是(
)
参考答案:A略4.函数的图象A.关于原点对称
B.关于直线对称
C.关于轴对称D.关于轴对称参考答案:D5.(5分)函数的定义域是() A. B. C. D. 参考答案:C考点: 函数的定义域及其求法.专题: 函数的性质及应用.分析: 要使函数的解析式有意义,自变量x须满足1﹣2x≥0,解不等式后,表示为区间形式,可得答案.解答: 要使函数的解析式有意义自变量x须满足1﹣2x≥0即x≤故函数的定义域为故选C点评: 本题考查的知识点是函数的定义域及其求法,其中根据使函数的解析式有意义的原则,构造不等式是解答的关键.6.已知集合A=,B=,则有(
)A.
B.
C.
D.参考答案:A因为集合A=,B=,那么可知,选A7..若正数a,b满足,则的最小值为()A. B. C.2 D.参考答案:A【分析】设,解得,又由,得,再利用基本不等式,即可求解其最小值.【详解】由题意,设,解得其中,因为,所以,整理得,又由,当且仅当,即等号成立,所以的最小值为.【点睛】本题主要考查了换元法的应用,以及利用基本不等式求最值问题,其中解答中合理利用换元法,以及准确利用基本不等式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.8.下列函数中,与函数相同的是()A. B. C. D.参考答案:D【考点】判断两个函数是否为同一函数.【分析】根据函数的“三要素”逐项判断即可.【解答】解:函数的值域为[0,+∞),而y=和的值域均为(﹣∞,0],故A、B与已知函数不是相同函数;的定义域为(﹣∞,0],而的定义域为(﹣∞,0),定义域不同,故C与已知函数不相同;的定义域为(﹣∞,0],且=,与已知函数解析式也相同,故D与已知函数是相同函数,故选D.9.记为实数a,b,c中的最大数.若实数x,y,z满足则的最大值为(
)A. B.1 C. D.参考答案:B【分析】先利用判别式法求出|x|,|y|,|z|的取值范围,再判断得解.【详解】因为,所以,整理得:,解得,所以,同理,.故选:B【点睛】本题主要考查新定义和判别式法求范围,意在考查学生对这些知识的理解掌握水平和分析推理能力.10.若关于x的不等式x2-x+a>0恒成立,则a的取值范围为(
)A.[,+)
B.(,+)
C.(-,]
D.(-,)参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知,则=
.参考答案:-812.已知f(3x)=2xlog2x,那么f(3)的值是
.参考答案:0【考点】抽象函数及其应用;函数的值.【分析】根据已知中函数的解析式,令x=1,可得f(3)的值.【解答】解:∵f(3x)=2xlog2x,令x=1,则f(3)=21log21=0,故答案为:0【点评】本题考查的知识点是函数求值,抽象函数及其应用,难度不大,属于基础题.13.已知函数的部分图象如图所示.则的解析式是______________。参考答案:14.若钝角三角形三边长为,则的取值范围是
.参考答案: 略15.设定义在[﹣2,2]上的奇函数f(x)在区间[0,2]上单调递减,若f(m)+f(m﹣1)>0,则实数m的范围是.参考答案:【考点】奇偶性与单调性的综合.【分析】根据函数奇偶性和单调性之间的关系,将不等式进行等价转化即可.【解答】解:∵f(x)是定义在[﹣2,2]上的奇函数,且f(x)在[0,2]上是减函数,∴f(x)在[﹣2,0]也是减函数,∴f(x)在[﹣2,2]上单调递减…又f(m﹣1)+f(m)>0?f(m)>﹣f(m﹣1)=f(1﹣m),即f(1﹣m)<f(m),∴…即:,所以…故满足条件的m的值为…,故答案为:.16.已知数列{an}中,且当时,则数列{an}的前n项和Sn=__________.参考答案:【分析】先利用累乘法计算,再通过裂项求和计算.【详解】,数列的前项和故答案为:【点睛】本题考查了累乘法,裂项求和,属于数列的常考题型.17.三棱柱ABC中,若E、F分别为AB、AC的中点,平面将三棱柱分成体积为、的两部分,那么∶
.参考答案:7∶5或5∶7三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设a,b,c均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤;(2)++≥1.参考答案:【考点】R6:不等式的证明.【分析】(1)a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,由累加法,再由三个数的完全平方公式,即可得证;(2)+b≥2a,+c≥2b,+a≥2c,运用累加法和条件a+b+c=1,即可得证.【解答】证明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,可得a2+b2+c2≥ab+bc+ca,(当且仅当a=b=c取得等号)由题设可得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,即有3(ab+bc+ca)≤1,则ab+bc+ca≤;(2)+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即有++≥a+b+c.(当且仅当a=b=c取得等号).故++≥1.19.四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求角C和BD;
(2)求四边形ABCD的面积.参考答案:解析:(1)由题意及余弦定理,
①
②由①,②得,故(2)四边形的面积
20.已知函数。(Ⅰ)当时,利用函数单调性的定义判断并证明的单调性,并求其值域;(Ⅱ)若对任意,求实数a的取值范围。参考答案:解析:(Ⅰ)任取
则,……………………2分当∵∴,恒成立∴∴上是增函数,∴当x=1时,f(x)取得最小值为,∴f(x)的值域为(Ⅱ),∵对任意,恒成立∴只需对任意恒成立。设∵g(x)的对称轴为x=-1,∴只需g(1)>0便可,g(1)=3+a>0,∴a>-3。21.已知函数f(x)=是定义在(﹣1,1)上的奇函数,且f()=(1)求实数m,n的值(2)用定义证明f(x)在(﹣1,1)上是增函数.参考答案:【考点】函数单调性的判断与证明;函数奇偶性的性质.【分析】(1)奇函数在原点有定义时,f(0)=0,从而可求得n=0,而由可求出m;(2)根据增函数的定义,设x1,x2∈(﹣1,1),且x1<x2,通过作差的方法证明f(x1)<f(x2)即可.【解答】解:(1)∵f(x)为(﹣1,1)上的奇函数∴f(0)=0;∴n=0;∵;∴;∴m=1;(2)f(x)=;设x1,x2∈(﹣1,1),且x1<x2,则:=;∵x1,x2∈(﹣1,1),且x1<x2;∴x1﹣x2<0,1﹣x1x2>0;∴f(x1)<f(x2);∴f(x)在(﹣1,1)上是增函数.22.已知函数f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),设h(x)=f(x)-g(x).(1)求函数h(x)的定义域;(2)判断h(x)的奇偶性,并说明理由;(3)若f(3)=2,求使h(x)>0成立的x的集合.
参考答案:解析:(1)由对数的意义,分别得1+x>0,1-x>0,即x>-1,x<1.∴函数f(x)的定义域为(-1,+∞),函数g(x)的定义域为(-∞,1),∴函数h(x)的定义域为(-1,1).(2)∵对任意的x∈(-1,1),-x∈(-1,1),h(-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农发行宁波市宁海县2025秋招笔试价值观测评题专练及答案
- 农发行酒泉市敦煌市2025秋招笔试英文行测高频题含答案
- 贵港桂平中储粮2025秋招笔试粮食政策与企业文化50题速记
- 农产品调研报告
- 2025年甘肃省兰州眼科医院(兰州市第一人民医院眼科)招聘考前自测高频考点模拟试题及1套参考答案详解
- 军训演讲稿集合15篇
- 包头市中石化2025秋招笔试行测50题速记
- 变更合同协议书
- 员工安全承诺书合集15篇
- 2025年湖州市南太湖科创投资发展集团有限公司及湖州锦富股权投资基金管理有限公司招聘7人模拟试卷及答案详解(网校专用)
- 蜜雪冰城转让店协议合同
- 2025年山东出版集团有限公司山东出版传媒股份有限公司招聘(192名)笔试参考题库附带答案详解
- 高校艺术团管理工作职责
- 民兵学习护路知识课件
- 抵押房屋处置三方协议
- 股东出资证明书范本
- 山东省青岛市黄岛区 2024-2025学年七年级上学期期末考试英语试题(含解析无听力原文及音频)
- 2024年团校共青团入团积极分子考试题【附答案】
- 【艾青诗选】批注
- 新媒体新闻写作、编辑与传播(第2版) 课件 第4章 网络新闻编辑与传播
- 2024年度小米电子产品销售代理合同2篇
评论
0/150
提交评论