湖南省衡阳市耒阳导子中学2022年高三数学理期末试题含解析_第1页
湖南省衡阳市耒阳导子中学2022年高三数学理期末试题含解析_第2页
湖南省衡阳市耒阳导子中学2022年高三数学理期末试题含解析_第3页
湖南省衡阳市耒阳导子中学2022年高三数学理期末试题含解析_第4页
湖南省衡阳市耒阳导子中学2022年高三数学理期末试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省衡阳市耒阳导子中学2022年高三数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.复数(

)A.

B.

C.

D.参考答案:C2.用min{a,b,c}表示a,b,c三个数中的最小值,设f(x)=min{2x,x+2,10﹣x}(x≥0),则f(x)的最大值为()A.4 B.5 C.6 D.7参考答案:C【考点】函数的最值及其几何意义.

【专题】计算题.【分析】在同一坐标系内画出三个函数y=10﹣x,y=x+2,y=2x的图象,以此作出函数f(x)图象,观察最大值的位置,通过求函数值,解出最大值.【解答】解:10﹣x是减函数,x+2是增函数,2x是增函数,令x+2=10﹣x,x=4,此时,x+2=10﹣x=6,如图:y=x+2与y=2x交点是A、B,y=x+2与y=10﹣x的交点为C(4,6),由上图可知f(x)的图象如下:C为最高点,而C(4,6),所以最大值为6.故选:C【点评】本题考查了函数的概念、图象、最值问题.利用了数形结合的方法.关键是通过题意得出f(x)的简图.3.已知抛物线(p>0)的准线与圆相切,则p的值为A.10

B.6

C.

D.参考答案:C略4.已知集合,,则A∩B=(

)A.(-1,2) B.(-∞,2) C.(-1,+∞) D.参考答案:A【分析】根据交集的定义可得结果.【详解】由交集定义可得:本题正确选项:【点睛】本题考查集合运算中的交集运算,属于基础题.5.正方体被一个平面截去一部分后,所得几何体的三视图如图所示,则截面图形的形状为A.等腰三角形 B.直角三角形C.平行四边形 D.梯形参考答案:A【分析】首先确定几何体的空间结构特征,然后确定截面的形状即可.【详解】如图所示,由三视图可得,该几何体是正方体被一个平面截去一个三棱锥所得的几何体,很明显三棱锥的两条侧棱相等,故截面是等腰三角形.故选:A.

6.已知数列﹛﹜为等比数列,且,则的值为(

)A.

B.

C.

D.参考答案:A7.设a、b是两条不同的直线,α、β是两个不同的平面,下列命题中正确的是(A)若

(B)若(C)若

(D)若参考答案:B8.已知非零常数α是函数y=x+tanx的一个零点,则(α2+1)(1+cos2α)的值为()A.2 B. C. D.参考答案:A【考点】函数与方程的综合运用;二倍角的余弦.【分析】由题意可得,tanα=﹣α,利用二倍角公式可得(α2+1)?(cos2α+1)=(1+tan2α)(2cos2α),化简可求.【解答】解:由题意非零常数α是函数y=x+tanx的一个零点,可得,tanα=﹣α,可得(α2+1)?(1+cos2α)=(1+tan2α)(2cos2α)=2(cos2α)×(+1)=2.故选:A.9.双曲线的虚轴长是实轴长的2倍,则m=

(A)

(B)-4

(C)4

(D)参考答案:A10.某程序框图如图所示,该程序运行后输出的k的值是()A.4 B.5 C.6 D.7参考答案:A【考点】程序框图.【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用,即可得出结论.【解答】解:根据流程图所示的顺序,程序的运行过程中各变量值变化如下表:是

否继续循环

S

k循环前/0

0第一圈

1

1第二圈

3

2第三圈

11

3第四圈

2059

4第五圈

否∴最终输出结果k=4故选:A.二、填空题:本大题共7小题,每小题4分,共28分11.甲、乙两人从4门课程中各选修2门。则甲、乙所选的课程中至少有1门不相同的选法共有

种参考答案:3012.对任意,函数满足,设,数列的前15项的和为,则

.参考答案:3/413.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。由图中数据可知a=

。参考答案:0.03014.若展开式中各项系数之和为128,则展开式中的系数为_______.参考答案:答案:-189

15.在直角三角形中,,过作边的高,有下列结论。请利用上述结论,类似地推出在空间四面体中,若,点到平面的高为,则

.参考答案:16.一盒中有6个小球,其中4个白球,2个黑球?从盒中一次任取3个球,若为黑球则放回盒中,若为白球则涂黑后再放回盒中.此时盒中黑球个数X的均值E(X)=.参考答案:4考点:离散型随机变量的期望与方差.专题:计算题;概率与统计.分析:由题意可得,当取出的3个小球全为白色时,X=5,当取出的小球是2白1黑时,X=4,当取出的小球是1白2黑时X=3,根据等可能事件的概率公式求出概率,进而可求期望值解答:解:由题意可得X可能取值为3,4,5P(X=3)==P(X=4)==P(X=5)==E(X)==4故答案为:4点评:本题主要考查了离散型随机变量的期望值的求解,解题的关键是随机变量取不同值时所对应的情况要准确求出17.已知命题.若命题p是假命题,则实数的取值范围是

.参考答案:因为命题为假命题,所以。当时,,所以不成立。当时,要使不等式恒成立,则有,即,所以,所以,即实数的取值范围是。三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=3acosB﹣ccosB.(Ⅰ)求cosB的值;(Ⅱ)若,且,求a和c的值.参考答案:考点:正弦定理;平面向量数量积的运算;两角和与差的正弦函数;余弦定理.专题:计算题;转化思想.分析:(1)首先利用正弦定理化边为角,可得2RsinBcosC=3×2RsinAcosB﹣2RsinCcosB,然后利用两角和与差的正弦公式及诱导公式化简求值即可.(2)由向量数量积的定义可得accosB=2,结合已知及余弦定理可得a2+b2=12,再根据完全平方式易得a=c=.解答: 解:(I)由正弦定理得a=2RsinA,b=2RsinB,c=2RsinC,则2RsinBcosC=6RsinAcosB﹣2RsinCcosB,故sinBcosC=3sinAcosB﹣sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即sin(B+C)=3sinAcosB,可得sinA=3sinAcosB.又sinA≠0,因此.(II)解:由,可得accosB=2,,由b2=a2+c2﹣2accosB,可得a2+c2=12,所以(a﹣c)2=0,即a=c,所以.点评:本题考查了正弦定理、余弦定理、两角和与差的正弦公式、诱导公式、向量数量积的定义等基础知识,考查了基本运算能力.19.(2015?雅安模拟)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D﹣ABC,如图2所示.(Ⅰ)求证:BC⊥平面ACD;(Ⅱ)求几何体D﹣ABC的体积.参考答案:考点: 棱柱、棱锥、棱台的体积;直线与平面垂直的判定.专题: 计算题.分析: (Ⅰ)解法一:由题中数量关系和勾股定理,得出AC⊥BC,再证BC垂直与平面ACD中的一条直线即可,△ADC是等腰Rt△,底边上的中线OD垂直底边,由面面垂直的性质得OD⊥平面ABC,所以OD⊥BC,从而证得BC⊥平面ACD;解法二:证得AC⊥BC后,由面面垂直,得线面垂直,即证.(Ⅱ),由高和底面积,求得三棱锥B﹣ACD的体积即是几何体D﹣ABC的体积.解答: 解:(Ⅰ)【解法一】:在图1中,由题意知,,∴AC2+BC2=AB2,∴AC⊥BC取AC中点O,连接DO,则DO⊥AC,又平面ADC⊥平面ABC,且平面ADC∩平面ABC=AC,DO?平面ACD,从而OD⊥平面ABC,∴OD⊥BC又AC⊥BC,AC∩OD=O,∴BC⊥平面ACD【解法二】:在图1中,由题意,得,∴AC2+BC2=AB2,∴AC⊥BC∵平面ADC⊥平面ABC,平面ADC∩平面ABC=AC,BC?面ABC,∴BC⊥平面ACD(Ⅱ)由(Ⅰ)知,BC为三棱锥B﹣ACD的高,且,S△ACD=×2×2=2,所以三棱锥B﹣ACD的体积为:,由等积性知几何体D﹣ABC的体积为:.点评: 本题通过平面图形折叠后得立体图形,考查空间中的垂直关系,重点是“线线垂直,线面垂直,面面垂直”的转化;等积法求体积,也是常用的数学方法.20.

已知是奇函数,且,(1)求实数p和q;(2)求f(x)的单调区间.参考答案:(1)是奇函数,即又(2),令即为增区间令即为减区间.21.如图,在平面四边形ABCD中,已知,现将四边形ABCD沿BD折起,使平面ABD平面BDC,设点F为棱AD的中点.(1)求证:DC平面ABC;(2)求直线与平面ACD所成角的余弦值.参考答案:(1)证明:在图甲中∵且∴,即在图乙中,∵平面ABD平面BDC,且平面ABD平面BDC=BD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论