江苏省镇江市丹徒区辛丰中学2022-2023学年高二数学文下学期期末试卷含解析_第1页
江苏省镇江市丹徒区辛丰中学2022-2023学年高二数学文下学期期末试卷含解析_第2页
江苏省镇江市丹徒区辛丰中学2022-2023学年高二数学文下学期期末试卷含解析_第3页
江苏省镇江市丹徒区辛丰中学2022-2023学年高二数学文下学期期末试卷含解析_第4页
江苏省镇江市丹徒区辛丰中学2022-2023学年高二数学文下学期期末试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省镇江市丹徒区辛丰中学2022-2023学年高二数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.将函数的图象按向量平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是(

A.

B.C.

D.参考答案:C略2.下列各图是正方体或正四面体,P,Q,R,S分别是所在棱的中点,这四个点中不共面的一个图是(

A

B

C

D参考答案:D略3.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为(

A. B. C. D.参考答案:C4.对于样本中的频率分布直方图与总体密度曲线的关系,下列说法正确的是()A.频率分布直方图与总体密度曲线无关B.频率分布直方图就是总体密度曲线C.样本容量很大的频率分布直方图就是总体密度曲线D.如果样本容量无限增大,分组的组距无限减小,那么频率分布直方图就会无限接近于总体密度曲线参考答案:D5.“”是“”的(

)A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要参考答案:B【分析】求出的的范围,根据集合之间的关系选择正确答案.【详解】,因此是的必要不充分条件.故选B.【点睛】本题考查充分必要条件的判断,充分必要条件队用定义判定外还可根据集合之间的包含关系确定.如对应集合是,对应集合是,则是的充分条件是的必要条件.6.设命题p:函数f(x)=3x﹣在区间(1,)内有零点;命题q:设f'(x)是函数f(x)的导函数,若存在x0使f'(x0)=0,则x0为函数f(x)的极值点.下列命题中真命题是()A.p且q B.p或q C.(非p)且q D.(非p)或q参考答案:B【考点】命题的真假判断与应用.【分析】先判断命题p,q的真假,再由复合命题真假判断的真值表判断四个复合命题的真假,可得答案.【解答】解:函数f(x)=3x﹣在区间(1,)上连续,且f(1)=﹣1<0,f()=3﹣>0,故命题p:函数f(x)=3x﹣在区间(1,)内有零点为真命题;若存在x0使f'(x0)=0,则x0可能不是函数f(x)的极值点.故命题q:设f'(x)是函数f(x)的导函数,若存在x0使f'(x0)=0,则x0为函数f(x)的极值点为假命题;故p且q,(非p)且q,(非p)或q为假命题;p或q为真命题,故选:B.7.已知x,y满足,则使目标函数z=y﹣x取得最小值﹣4的最优解为(

)A.(2,﹣2) B.(﹣4,0) C.(4,0) D.(7,3)参考答案:C【考点】简单线性规划.【专题】计算题;作图题;不等式的解法及应用.【分析】由题意作出其平面区域,将z=y﹣x化为y=x+z,z相当于直线y=x+z的纵截距,由图象可得最优解.【解答】解:由题意作出其平面区域,

将z=y﹣x化为y=x+z,z相当于直线y=x+z的纵截距,则由平面区域可知,使目标函数z=y﹣x取得最小值﹣4的最优解为(4,0);故选C.【点评】本题考查了简单线性规划,作图要细致认真,属于中档题.8.在复平面内,复数对应的点位于(

)A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:A试题分析:,在复平面内对应的点为,位于第一象限.故A正确.考点:复数的运算.9.若抛物线y2=4x的焦点是F,准线是l,点M(1,2)是抛物线上一点,则经过点F、M且与l相切的圆一共有A.0个

B.1个

C.2个

D.4个参考答案:D略10.设为等差数列的前n项的和,,,则的值为(

)A.2014

B.-2014

C.2013

D.-2013参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知随机变量ξ服从正态分布N(0,σ2),若P(ξ>2)=0.023,则P(﹣2≤ξ≤2)=.参考答案:0.954【考点】CP:正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量ξ服从正态分布N(0,σ2),得到正态曲线关于x=0对称,根据P(ξ>2)=0.023,得到对称区间上的概率,从而可求P(﹣2≤ξ≤2).【解答】解:∵随机变量ξ服从正态分布N(0,σ2),∴正态曲线关于x=0对称,∵P(ξ>2)=0.023,∴P(ξ<﹣2)=0.023∴P(﹣2≤ξ≤2)=1﹣0.023﹣0.023=0.954,故答案为:0.95412.已知某校一间办公室有四位老师甲、乙、丙、丁,在某天的某个时刻,他们每人各做一项工作,一人在查资料,一人在写教案,一人在批改作业,另一人在打印资料:(1)甲不在查资料,也不在写教案;(2)乙不在打印资料,也不在查资料;(3)丙不在批改作业,也不在打印资料;(4)丁不在写教案,也不在查资料.此外还可确定,如果甲不在打印资料,那么丙不在查资料,根据以上消息可以判断甲在_______.参考答案:打印材料【分析】结合条件(1),先假设甲在批改作业,再结合题中其它条件分析,推出矛盾,即可得出结果.【详解】因为甲不在查资料,也不在写教案,若甲在批改作业,根据“甲不在打印资料,那么丙不在查资料”以及“丙不在批改作业,也不在打印资料”得,丙在写教案;又“乙不在打印资料,也不在查资料”,则乙可能在批改作业或写教案,即此时乙必与甲或丙工作相同,不满足题意;所以甲不在批改作业;因此甲在打印资料.故答案为:打印材料【点睛】本题主要考查简单的合情推理,结合题中条件直接分析即可,属于常考题型.13.________;________.参考答案:

-3【分析】利用分数指数幂与对数的运算规则进行计算即可。【详解】,故答案为:(1).

(2).-3【点睛】本题考查分数指数幂与对数的运算规则,是基础题。

14.在等差数列{an}中,若a10=0,则有a1+a2+…+an=a1+a2+…+a19﹣n(n<19,n∈N*)成立,类比上述性质,在等比数列{bn}中,若b9=1,则有.参考答案:【考点】类比推理.【分析】根据类比的方法,和类比积,加类比乘,由此类比即可得出结论.【解答】解:在等差数列{an}中,若a10=0,有等式a1+a2+…+an=a1+a2+…+a19﹣n(n<19,n∈N*)成立,∴在等比数列{bn}中,若b9=1,则有等式.故答案为:.15.观察式子:,,,,则可归纳出式子为__________________参考答案:略16.如图所示的三角形数阵叫“莱布尼兹调和三角形”,有,则运用归纳推理得到第10行第2个数(从左往右数)为

.参考答案:17.以椭圆3x2+13y2=39的焦点为顶点,以为渐近线的双曲线方程为.参考答案:【考点】KI:圆锥曲线的综合.【分析】求出椭圆的焦点坐标,得到双曲线的顶点坐标,结合双曲线的渐近线方程,求解即可.【解答】解:以椭圆3x2+13y2=39的焦点为(±,0),则双曲线的顶点(±,0),可得a=,以为渐近线的双曲线,可得b=,所求的双曲线方程为:.故答案为:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知椭圆过点,离心率为,圆的圆心为坐标原点,直径为椭圆的短轴,圆的方程为.过圆上任一点作圆的切线,切点为.(1)求椭圆的方程;(2)若直线与圆的另一交点为,当弦最大时,求直线的直线方程;(3)求的最值.参考答案:因为直线与圆O:相切,所以,解得或,…………9分所以,直线的方程为或……10分(3)设,则=10==,………………14分因为OM=10,所以,所以,的最大值为,的最小值为………16分19.已知函数f(x)=(x﹣k)ex(k∈R).(1)求f(x)的单调区间和极值;(2)求f(x)在x∈[1,2]上的最小值;(3)设g(x)=f(x)+f′(x),若对及?x∈[0,1]有g(x)≥λ恒成立,求实数λ的取值范围.参考答案:【考点】导数在最大值、最小值问题中的应用;利用导数研究函数的极值;利用导数求闭区间上函数的最值.【分析】(1)由f(x)=(x﹣k)ex,求导f′(x)=(x﹣k+1)ex,令f′(x)=0,求得x=k﹣1,令f′(x)<0,解得函数的单调递减区间,f′(x)>0,解得函数的单调递增区间,根据函数的单调性即可求得f(x)的极值;(2)当k﹣1≤1时,f(x)在[1,2]单调递增,f(x)的最小值为f(1),当k﹣1≥2时,f(x)在[1,2]单调递减,f(x)的最小值为f(2),当1<k﹣1<2时,则x=k﹣1时,f(x)取最小值,最小值为:﹣ek﹣1;(3)由g(x)=(2x﹣2k+1)ex,求导g′(x)=(2x﹣2k+3)ex,当g′(x)<0,解得:x<k﹣,求得函数的单调递减区间,当g′(x)>0,解得:x>k﹣,求得函数的单调递增区间,由题意可知g(x)≥λ,?x∈[0,1]恒成立,等价于g(k﹣)=﹣2e≥λ,由﹣2e≥λ,对?k∈[,]恒成立,根据函数的单调性,即可求得实数λ的取值范围.【解答】解:(1)f(x)=(x﹣k)ex(k∈R),求导f′(x)=(x﹣k)ex+ex=(x﹣k+1)ex,令f′(x)=0,解得:x=k﹣1,当x<k﹣1时,f′(x)<0,当x>k﹣1时,f′(x)>0,x(﹣∞,k﹣1)k﹣1(k﹣1,+∞)f′(x)﹣0+f(x)↓﹣e﹣k﹣1↑∴f(x)的单调递增区间(k﹣1,+∞),单调递减区间(﹣∞,k﹣1),极小值为﹣ek﹣1,无极大值;(2)当k﹣1≤1时,即k≤2时,f(x)在[1,2]单调递增,f(x)的最小值为f(1)=(1﹣k)e;当k﹣1≥2时,即k≥3时,f(x)在[1,2]单调递减,∴当x=2时,f(x)的最小值为f(2)=(2﹣k)e3;当1<k﹣1<2时,解得:2<k<3时,∴f(x)在[1,k﹣1]单调递减,在[k﹣1,2]单调递增,∴当x=k﹣1时,f(x)取最小值,最小值为:﹣ek﹣1;(3)g(x)=f(x)+f'(x)=(x﹣k)ex+(x﹣k+1)ex=(2x﹣2k+1)ex,求导g′(x)=(2x﹣2k+1)ex+2ex=(2x﹣2k+3)ex,令g′(0)=0,2x﹣2k+3=0,x=k﹣,当x<k﹣时,g′(x)<0,当x>k﹣时,g′(x)>0,∴g(x)在(﹣∞,k﹣)单调递减,在(k﹣,+∞)单调递增,故当x=k﹣,g(x)取最小值,最小值为:g(k﹣)=﹣2e,∵k∈[,],即k﹣∈[0,1],∴?x∈[0,1],g(x)的最小值,g(k﹣)=﹣2e,∴g(x)≥λ,?x∈[0,1]恒成立,等价于g(k﹣)=﹣2e≥λ,由﹣2e≥λ,对?k∈[,]恒成立,∴λ≤(﹣2e)最小值,令h(k)=﹣2e,k∈[,],由指数函数的性质,函数h(k)在k∈[,]单调递增,∴当k=时,h(k)取最小值,h()=﹣2e,∴λ≤﹣2e.∴实数λ的取值范围(﹣∞,﹣2e).20.如图所示,在四棱锥P﹣ABCD中,AB⊥平面PAD,AB∥CD,E是PB的中点,F是CD上的点,PH为△PAD中AD边上的高.(Ⅰ)证明:PH⊥平面ABCD;(Ⅱ)若PH=1,,FC=1,求三棱锥E﹣BCF的体积.参考答案:【考点】直线与平面垂直的判定;棱柱、棱锥、棱台的体积.【专题】综合题;数形结合;数形结合法;空间位置关系与距离.【分析】(I)由AB⊥平面PAD得平面PAD⊥平面ABCD,根据面面垂直的性质推出PH⊥平面ABCD;(II)由AB⊥平面PAD,AB∥CD得CD⊥平面PAD,故AD⊥CD,因为E是PB中点,故E到平面BCF的距离为PH的一半,代入体积公式计算出棱锥的体积.【解答】证明:(I)∵AB⊥平面PAD,AB?平面ABCD,∴平面PAD⊥平面ABCD,∵平面PAD∩平面ABCD=AD,PH⊥AD,PH?平面PAD,∴PH⊥平面ABCD.(II)∵AB⊥平面PAD,AB∥CD,∴CD⊥平面PAD,∵AD?平面PAD,∴CD⊥AD,∴S△BCF==,∵E是PB的中点,PH⊥平面ABCD,∴E到平面ABCD的距离h==,∴V棱锥E﹣BCF=S△BCF?h==.【点评】本题考查了线面垂直的判定与性质,棱锥的体积计算,属于中档题.21.(本小题满分12分)在锐角△ABC中,分别为∠A、∠B、∠C所对的边,且(1)确定∠C的大小;(2)若c=,求△ABC周长的取值范围.参考答案:(1)已知a、b、c分别为∠A、∠B、∠C所对的边,由a=2csinA,得sinA=2sinCsinA,又sinA≠0,则sinC=,∴∠C=60°或∠C=120°,∵△ABC为锐角三角形,∴∠C=120°舍去。∴∠C=60°…4分(2)∵c=,sinC=∴由正弦定理得:,………………5分即a=2sinA,b=2sinB,又A+B=π-C=,即B=-A,∴a+b+c=2(sinA+sinB)+=2[sinA+sin

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论