




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京求精中学2021-2022学年高二数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.(5分)已知条件p:a≤1,条件q:|a|≤1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:B因为条件q:|a|≤1,即为﹣1≤a≤1;因为{a|﹣1≤a≤1}?{a|a≤1};所以p推不出q,反之q能推出p;所以p是q的必要不充分条件;故选B.2.已知f(x)是定义在R上的函数,且f(x)=f(x+2)恒成立,当x∈(﹣2,0)时,f(x)=x2,则当x∈[2,3]时,函数f(x)的解析式为()A.x2﹣4 B.x2+4 C.(x+4)2 D.(x﹣4)2参考答案:D考点: 函数解析式的求解及常用方法;函数的周期性.
专题: 计算题.分析: 根据f(x)=f(x+2)判断出函数的周期性,再根据周期性,把∈[2,3]的函数值变形到(﹣2,0)上来求.解答: 解:∵f(x)=f(x+2),∴f(x)是周期为2的周期函数,∵当x∈(﹣2,0)时,f(x)=x2,根据周期性,当x∈2,3]时,f(x)=f(x﹣4)=(x﹣4)2故选D点评: 本题考查了函数的周期性的判断与应用,是高考必考内容3.在三棱柱ABC-A1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是(
▲
)A.300
B.450
C.600
D.900参考答案:C略4.设且,则(
)A.
B.
C.
D.参考答案:A略5.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是()参考答案:D6.下列三句话按三段论的模式排列顺序正确的是①z1,z2不能比较大小;②虚数不能比较大小;③z1,z2是虚数.A.①②③
B.②①③
C.②③①
D.③②①参考答案:C略7.已知集合(
)A.
B.
C.
D.参考答案:D8.要完成下列2项调查:①从某社区125户高收入家庭,280户中等收入家庭,95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学高一年级的12名体育特长生中选出3人调查学习负担情况.应采用的抽样方法是A.①用随机抽样法
②用系统抽样法
B.①用分层抽样法
②用随机抽样法C.①用系统抽样法
②用分层抽样法
D.①、②都用分层抽样法参考答案:B略9.某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记作①;某学校高一年级有12名女排运动员,要从中选出3名调查学习负担情况,记作②.那么完成上述两项调查应采用的抽样方法是(
)A.①用简单随机抽样法;②用系统抽样法B.①用分层抽样法;②用简单随机抽样法C.①用系统抽样法;②用分层抽样法D.①用分层抽样法;②用系统抽样法参考答案:B对于①,总体由高收入家庭、中等收入家庭和低收入家庭差异明显的3部分组成,而所调查的指标与收入情况密切相关,所以应采用分层抽样法.对于②,总体中的个体数较少,而且所调查内容对12名调查对象是“平等”的,所以适宜采用简单随机抽样法.10.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于同一个常数.若第一个单音的频率为f,第三个单音的频率为,则第十个单音的频率为()A. B. C. D.参考答案:B【分析】根据题意,设单音的频率组成等比数列{an},设其公比为q,由等比数列的通项公式可得q的值,进而计算可得答案.【详解】根据题意,设单音的频率组成等比数列{an},设其公比为q,(q>0)则有a1=f,a3,则q2,解可得q,第十个单音的频率a10=a1q9=()9ff,故选:B.【点睛】本题考查等比数列的通项公式,关键是求出该等比数列的公比,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.一份试卷有10个题目,分为两组,每组5题,要求考生选择6题,且每组至多选择4题,则考生有
种不同的选答方法.参考答案:200略12.当时,不等式恒成立,则的值范围是
.(用区间表示)参考答案:13.在△ABC中,A=30°,BC=2,D是AB边上的一点,CD=2,△BCD的面积为4,则AC的长为
.参考答案:4或2【考点】余弦定理;正弦定理.【分析】由△BCD的面积为4,求得sin∠BCD的值,进而求得cos∠BCD的值,△BCD中,由余弦定理可得BD的值,△BCD中,由正弦定理求得sinB的值.再在△ABC中,由正弦定理求得AC的长.【解答】解:由题意可得CB?CD?sin∠BCD=4,即×2×2sin∠BCD=4,解得sin∠BCD=.①当∠BCD为锐角时,cos∠BCD=.△BCD中,由余弦定理可得BD==4.△BCD中,由正弦定理可得,即,故sinB=.在△ABC中,由正弦定理可得,即,解得AC=4.②当∠BCD为钝角时,cos∠BCD=﹣.△BCD中,由余弦定理可得BD==4.△BCD中,由正弦定理可得,即,故sinB=.在△ABC中,由正弦定理可得,即,解得AC=2.综上可得AC=4或2,故答案为
4或2.14.如图,分别为椭圆的左、右焦点,点在椭圆上,是面积为的正三角形,则的值是
***
。参考答案:略15.(5分)(2014?东城区二模)若直线y=k(x+1)(k>0)与抛物线y2=4x相交于A,B两点,且A,B两点在抛物线的准线上的射影分别是M,N,若|BN|=2|AM|,则k的值是.参考答案:【考点】:抛物线的简单性质.【专题】:计算题;圆锥曲线的定义、性质与方程.【分析】:直线y=k(x+1)(k>0)恒过定点P(﹣1,0),由此推导出|OA|=|BF|,由此能求出点A的坐标,从而能求出k的值.解:设抛物线C:y2=4x的准线为l:x=﹣1直线y=k(x+1)(k>0)恒过定点P(﹣1,0),过A、B分别作AM⊥l于M,BN⊥l于N,由|BN|=2|AM|,则|BF|=2|AF|,∴点A为BP的中点.连接OA,则|OA|=|BF|,∴|OA|=|AF|,∴点A的横坐标为,∴点A的坐标为(,),把(,)代入直线l:y=k(x+1)(k>0),解得k=.故答案为:.【点评】:本题考查直线与圆锥曲线中参数的求法,考查抛物线的性质,是中档题,解题时要注意等价转化思想的合理运用.16.函数在x=4处的导数=
。参考答案:略17.已知直线,平面,并给出以下命题:①
若a,b∥,则a∥b;②若a,b,且∥;则a∥b;③若a∥,b∥,则a∥b;
④若,,则;其中正确的命题有
.参考答案:④略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,直棱柱中,分别是的中点,.⑴证明:;⑵求三棱锥的体积.
参考答案:⑴由,知,又,故,,故;⑵(理科)设,故可得,,,故,故,又由⑴得,故,故所求角的平面角为,故.
⑵(文科)由⑴知,又为直角三角形(理科已证)故.
略19.(2015?商丘三模)已知函数f(x)=|2x﹣1|﹣|x+2|.(1)求不等式f(x)>0的解集;(2)若存在x0∈R,使得f(x0)+2a2<4a,求实数a的取值范围.参考答案:【考点】绝对值三角不等式.【专题】转化思想;综合法;不等式的解法及应用.【分析】(1)把f(x)用分段函数来表示,令f(x)=0,求得x的值,可得不等式f(x)>0的解集.(2)由(1)可得f(x)的最小值为f(),再根据f()<4a﹣2a2,求得a的范围.【解答】解:(1)函数f(x)=|2x﹣1|﹣|x+2|=,令f(x)=0,求得x=﹣,或x=3,故不等式f(x)>0的解集为{x|x<﹣,或x>3}.(2)若存在x0∈R,使得f(x0)+2a2<4a,即f(x0)<4a﹣2a2有解,由(1)可得f(x)的最小值为f()=﹣3?﹣1=﹣,故﹣<4a﹣2a2,求得﹣<a<.【点评】本题主要考查分段函数的应用,函数的能成立问题,属于中档题.20.已知函数f(x)=|x+m|+|2x﹣1|(m∈R).(1)当m=﹣1时,求不等式f(x)≤2的解集;(2)设关于x的不等式f(x)≤|2x+1|的解集为A,且[1,2]?A,求实数m的取值范围.参考答案:【分析】(1)当m=﹣1时,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)由题意可得,当x∈[1,2]时,关于x的不等式f(x)≤|2x+1|恒成立,即﹣2≤x+m≤2恒成立,即﹣x﹣2≤m≤2﹣m恒成立,由此可得实数m的取值范围.【解答】解:(1)当m=﹣1时,函数f(x)=|x﹣1|+|2x﹣1|,不等式f(x)≤2,即|x﹣1|+|2x﹣1|≤2,故有①,或②,或③.解①求得0≤x<,解②求得≤x≤1,解③求得1<x≤.综上可得,不等式f(x)≤2的解集为{x|0≤x≤}.(2)由题意可得,当x∈[1,2]时,关于x的不等式f(x)≤|2x+1|恒成立,即|x+m|+|2x﹣1|≤|2x+1|恒成立,即|x+m|≤(2x+1)﹣(2x﹣1)=2恒成立,∴﹣2≤x+m≤2恒成立,即﹣x﹣2≤m≤2﹣m恒成立,∴﹣3≤m≤0,即实数m的取值范围为[﹣3,0].21.(10分)已知x+y+z=1,求2x2+3y2+z2的最小值。参考答案:解:由柯西不等式,得(2x2+3y2+z2)·(++1)≥(x+y+z)2,∴2x2+3y2+z2≥=(8分).当且仅当x+y+z=1并且==即x=,y=,z=时取“=”
(10
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 4A级景区综合提升及配套服务设施建设项目施工方案
- 校园安全教育18句感受
- 热力工程项目风险管理方案
- 水库清淤疏浚施工实施计划
- 校园安全教育阵地建设
- 宜宾古建修缮施工方案
- 铁路涵洞注浆施工方案
- 建筑材料制造项目施工方案
- XX市城区排水管网更新改造工程技术方案
- 提防加固工程施工方案
- 连铸工岗位操作规程考核试卷及答案
- 第一单元 第2课《童真时光》 【人教版】美术 三年级上册
- 广州市公安局天河分局招聘辅警考试真题2024
- 2025年全国货运驾驶员职业技能资格考试试题(基础知识)含答案
- GB/T 46150.2-2025锅炉和压力容器第2部分:GB/T 46150.1的符合性检查程序要求
- 2025年甘肃省高考历史真题卷含答案解析
- 中华优传统文化(慕课版)教案
- 2025广东广州市国资委选调公务员2人笔试模拟试题及答案解析
- 美容美发店2025年营销方案创新解析
- 档案知识培训课件
- 肱骨髁上骨折
评论
0/150
提交评论