




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
付息票债券的远期价格偏高时的套利机会市场情况一年后交割的附息票债券远期合约的价格为930美元。债券的即期价格为900美元。预期债券在6个月后12个月后各支付40美元的利息。6个月期和12个月期的无风险利率分别为9%和10%。套利机会远期价格偏高,套利者可以:即期借900美元,买入一份债券。卖空一份债券的远期合约。在即期所借900美元中,其中38.24美元以9%的年利率借入6个月,另外861.76美元以10%的年利率借入一年。首次利息支付40美元正好用来偿还6个月期38.24美元贷款的本金和利息。一年之后,收到了第二次利息40美元,根据远期合约条款卖出债券收到930美元。861.76美元的贷款到期共需偿还本金和利息952.39美元。该策略净盈利为:40€930-952.39,17.61操作t,0t,0.5t,1卖空F00930-ST买入B-90040S€40T借入900v|0e-0.09x0.5+(900—40e-0.09x0.5„„-40一(900一40e-0.09x0.5)eix0.1合计0017.61付息票债券的远期价格偏低时的套利机会市场情况一年后交割的附息票债券远期合约的价格为905美元。债券的即期价格为900美元。预期债券在6个月后12个月后分别支付利息40美元。6个月期和12个月期的无风险利率分别为9%和10%。套利机会远期价格偏低,套利者可以:卖出一份债券。签署一年后购买一份债券的远期合约。卖出债券得到900美元,其中38.24美元作6个月无风险投资,另外861.76美元作一年无风险投资。此策略在6个月和12个月后分别产生40美元和952.39美元的现金流入。前面40美元用来支付6个月后的债券利息;后面952.39美元中40美元用来支付一年后的债券利息,905美元用来根据远期合约条款购回债券,即期出售债券而远期将该债券购回的策略所产生的净收益为:952.39-40-905,7.39比简单的持有一年该债券的收益更多。
操作t€0.5买入FS—905T卖空B900—40—操作t€0.5买入FS—905T卖空B900—40—S—40T存银行—900-0.09„0.5…Go0—40e-0.09„0.5))40—40e—0.09„0.5)ei„0.117.613.5一种股票预计在两个月后会每股支付1美元红利,5个月后再支付一次。股票价格为50美元,无风险利率为8%(对任何到期日连续复利计息)。一位投资者刚刚持有这种股票的6个月远期合约的空头寸。(a)远期价格为多少?远期合约的初始价值为多少?17.61(b)3个月后,股票价格为48美元,无风险利率不变。远期价格和远期合约空头头寸的价值为多少?(a)股票分配股息的现值为:I€1„e-0.08„12+1„e-0.08„12€1.95401远期价格:F=(S-1)ert€,50—1.9540)e0.08„0.5€50.01111因为投资者刚刚持有该头寸,所以远期合约初始价值-f€0,且K€F11(b)3个月后,股票分配股息的现值为:I€1„e-0.08„12€0.98682远期价格:F=(s—I}en2=(48—0.9868)e0.08„!2=47.96222远期合约空头头寸价值:—f€—(F—K人厲=—(47.96—50.01)e—0.08„12=2.0125.31一家银行向企业客户提供两种选择:一种是按11%的利率借入现金,另一种是以2%利率借入黄金(当借入黄金时,必须以黄金形式支付利息,因此,如果今天借入100盎司,在1年后必须偿还102盎司黄金)。无风险利率为每年9.25%,贮存费为每年0.5%。讨论同现金贷款利率相比,借入黄金的利率是太高还是太低?这里两种贷款的利率均为每年复利一次,无风险利率和贮存费用利率均为连续复利。设黄金价格为1000美元/盎司,并且这个客户想借入的资金为1000000美元。该客户既可以直接借入1000000美元现金,也可以借入1000盎司黄金。如果直接借入现金,则到期需偿还1000000Xl.ll=niOOOO美元。如果借入1000盎司黄金,到期需偿还1020盎司黄金。由于厂=9.25%,u€0.5%,根据教材公式,可得远期价格为:F€Se(r+u)T€1000e(0.0925+0.005)1€1102.41通过在远期市场买入1020盎司黄金,该企业客户可以锁定借入黄金的到期偿还额为:1020„1102.41€1124460很明显,直接借入现金要优于借入黄金(1124460>1110000)。计算结果表明,借入黄金的利率过高。那么多高的利率是合理的呢?假定R是借入黄金的利率,那么到期该企业客户需偿还黄金数为1000X(1+R)盎司,根据上面的远期价格,则借款成本为:1000,(1+R),1102.41„1110000…R„0.688%因此借入黄金的利率比合理利率高出1.31个百分点。老师课上做法:r„11%1102FA102Se(r+u)Tr„-1„-1„1.02e(0.0925+0.005)_1„12.44%2100S100S所以应该选择直接借入现金。3.10瑞士和美国按连续复利计息的两个月期的年利率分别为3%和8%。瑞士法郎的即期价格为0.65美元。两个月后交割的期货合约的期货价格为0.66美元。问存在什么样的套利机会?理论上期货价格:F„0.65e(0.08_0-03V„0.6554所以实际的期货价格被高估,套利者可以通过借入美元买入瑞士法郎同时卖出瑞士法郎期货合约进行套利。3.11、一家公司持有价值为2000万美元、卩=1.2的股票组合。该公司想利用标普500期货来对冲风险。股指期货的当前水平是1080,每一份期货合约是关于250美元乘股指。什么样的对冲可以使风险最小化?公司怎么做才可以将组合的B值降低到0.6?应卖空的合约数量N„B^a„1.2,„88.9V1080,250F近似为整数,应卖空的合约数为89份。如果欲将组合的B值降低到0.6,应卖空的合约数为前者的一半,即应卖空44份合约。3.12假定今天是7月16日,一家公司持有价值1亿美元的股票组合,组合的卩=1.2,这家公司希望用CME的12月标普500股指期货组合在7月16日至11月16日之间变化的卩由1.2变成0.5.当前股指期货价格为1000,每一份期货合约的规模是250美元与股指的乘积。(a)公司应做什么样的交易?(b)假如公司改变初衷而想将投资组合的B由1.2增加到1.5,公司应持有什么样的头寸?公司应卖出的期货合约的数量:“()V()100000000N„(B-B*丿r„(1.2-0.5)x„280V1000x250F公司应买入的期货合约的数量:N',*心丄5„I』人加=120F3.13、标准普尔指数=200,股票组合的价值=204万美元,无风险年利率=10%,指数红利收益率=4%,股票组合的B=1.5.假设利用4个月有效期的标准普尔500指数期货合约对冲股票组合在未来3个月的风险。一份指数期货合约的价值等于指数乘以500美元。则目前的期货价格应该为:F二Se(r-qk=2OOe(o」-0.04hi3二204.04于是期货合约价格V二500…204.04=102020美元。由FS2040000N=,二1.5…二30V102020F假设指数在3个月内变为180,期货的价格为:F二Se(r„q)r=180e©」-。。决112二180.90卖空股票指数期货合约可获利30…(204.04-180.90)x500=347100美元在股票指数上的损失为10%,指数每年支付4%的股利,即每3个月为1%。如果将股利考虑在内,投资者在3个月内获得的指数收益为—9%。无风险利率大约为每3个月2.5%。由组合的B=1.5。得到股票组合的期望收益率为:2.5%+1.5%x(-9%-2.5%)=-14.75%在3个月末,股票组合的价值(包含股利)为:2040000x(1-0.1475)=1739100美元套期保值者的头寸期望值(包含在指数期货上的盈利):1739100+347100=2086200美元当一个变量增加而其他变量保持不变时,对于股票期权价格的影响变量欧式看涨欧式看跌美式看涨美式看跌当前股票价格+一+一执行价格一+一+时间期限??++波动率++++无风险利率+一+一股息数量一+一+期权价格的上限与下限期权类型上下限无股息股票美式看涨max(S-Xe-n,0)<C<S00无股息股票欧式看涨max(S-Xe-江,0)<c<S00
无股息股票美式看跌max(X-S,0)<P<X0无股息股票欧式看跌max(xe-何-S,0)<P<Xe―疔0欧式看涨看跌平价关系c„Xe-rT…p„S0美式期权看涨看跌关系S—X<C—P<S—Xe-rT00考虑股息欧式看涨期权下限max(S-D-Xe—rT,0)0考虑股息欧式看跌期权下限max(Xe—rT+D一S,0)0支付股息平价关系c+D+Xe-rT…p+S0考虑股息时的D应为贴现值欧式看跌看涨期权不满足平价关系时的套利机会相对看跌期权价格而言看涨期权价格太低市场情况某投资者刚刚获得如下股票欧式期权的报价,股票价格为31美元,3个月期无风险利率为年利率10%,看涨期权和看跌期权的执行价格都是30美元,3个月后到期。欧式看涨期权价格:3美元欧式看跌期权价格:2.25美元策略1、购买看涨期权2、出售看跌期权3、卖空一股股票结果这个策略给出的初试现金流为:31-3+2.25=30.25美元。将这笔资金按无风险利率投资3个月,3个月末本息为:30.25ei2…31.02美兀。3个月末,有如下两种可能性:1、如果股票价格大于30美元,投资者执行看涨期权。即按照30美元价格购买一份股票,平仓空头,获利31.02-30=1.02美兀。2、如果股票价格小于30美兀,的价格购买一份股票,平仓空头,获该投资者的对手执行看跌期权。即投资者按照30美兀利31.02-30=1.02美兀。操作t…0t…T买入看涨-3max(S-30,0)T卖出看跌„2.25min(S-30,0)T卖空股票„31,ST存入银行—30.25+31.02
合计01、S€30;1.02.2、S<30;1.02合计TT6、执行价格为20美元,3个月后到期的欧式看涨期权和欧式看跌期权,售价都为3美元。无风险年利率为10%,股票现价为19美元,预计1个月后发放红利1美元。说明投资者存在什么样的套利机会?根据看涨期权平价关系:p„c+D+Xe-rT—S„3+1xe-o.ixi/i2+20e-o.ixo.25—19„4.500这个值高于3美元,说明看跌期权被低估。套利方法:买入看跌期权和股票,同时卖出看涨期权。8.8、一个无红利支付股票的美式看涨期权的价格为4美元。股票价格为31美元,执行价格为30美元,3个月后到期。无风险利率为8%。请推出相同股票、相同执行价格、相同到期日的美式看跌期权的价格上下限。美式看跌看涨期权存在如下关系:S-X<C-P<S-Xe,rT00在本题中:331,30<4—P<31,30e,8%工即:2.41<P<38.6、执行价格为30美元,6个月后到期的欧式看涨期权的价格为2美元。标的股票价格为29美元,2个月后和5个月后分红利0.5美元。期限结构为水平,无风险利率为10%。执行价格为30美元,6个月后到期的欧式看跌期权的价格为多少?根据看涨看跌期权平价关系:c+Xe-rT+D„p+S0移项得:p„c+Xe-rT+D—S0在本题中:(2A)p„2+30e,0.5x0.1+0.5e,0.1x12+0.5e,0.1x12-29„2.51
I丿9.3假设执行价格为30美元和35美元的看跌期权成本分别为4美元和7美元,怎样用期权构造牛市价差期权和熊市价差期权?作出表格说明这两个期权的收益和盈亏状况可以通过购买执行价格为30美元的看跌期权和卖出执行价格为35美元的看跌期权构建牛市差价,该策略初始现金流为3美元,收益和盈亏如下表所示:股票价格St股票价格St收益盈亏S€35TS—S—32TS—35TS—35TS<30T—5—230€S<35T可以通过卖出执行价格为30美元的看跌期权和买入执行价格为35美元的看跌期权构建熊市差价,该策略初始成本为3元,收益和盈亏如下表:股票价格ST收益盈亏S>35T0,330€S<35T35—ST32—STS<30T529.4、三个同一股票上具有同样期限的看跌期权执行价格分别为55美元、60美元和65美元,这3种期权的市场价格分别为3美元、5美元和8美元。解释如何构造蝶式差价。用表来说明这一策略的盈利形式。股票在什么价位时,这一交易策略会导致亏损。蝶式差价的构造方法为:购买一份执行价格为55美元的看跌期权,购买一份执行价格为65美兀的看跌期权,同时卖出两份执行价格为60美兀的看跌期权。初始成本为3+8-2X5=1美元。该交易策略的损益情况如表所示:股票价格sT收益盈亏S>65T0—160€S<65T65—ST64—ST55€S<60TS—55TS—56TS<55T0-1当最后的股票价格大于64或者小于56美元时,蝶式差价交易策略会导致损失10.1、某个股票现价为50美元,已知两个月后,股票的价格为53美元或者48美元。无风险年利率为10%(连续复利)。请用无套利原理说明,执行价格为49美元的2个月后到期的欧式看涨期权的价值为多少?方法一(无套利原理):2个月结束的时候,期权的价值为4美元(如果股价为53美元)或者0美元(如果股价为48美元)。考虑一份资产组合的构成:」单位股票和一份看中期权的空头。两个月后组合的价值或者为4^或者为汎,4。如果:48厶=53厶,4=0.8即资产组合的价值为38.4(48,0.8or53,0.8-4)。因此对组合来说,其收益是无风险的。组合的现值为:0.8,50-f,其中f为期权的价值。因为组合必须以无风险的利率盈利所以:(0.8,50-f)e0A,n„38.4…f„2.23方法二(风险中性):直接利用公式:方法二(风险中性):f„e—rT[f+€1-P)/]其中:P„—u-d有题意u„53„1.03,d„48„0.96…p„刘12—0.96„0.568150501.03-0.96所以f„e-0,1xi2,0.5681,4„2.2310.9、某个股票的现价为25美元。已知两个月后,股价变为23美元或者27美元。无风险年利率10%(连续复利)。设S为2个月后股票价格。在这时收益为S2的期权的价值为多TT少?方法一(无套利原理):2个月结束的时候,金融工具的价值为529美元(如果股价为23美元23X23)或者729美元(如果股价为27美元27X27)。考虑一份资产组合的构成:■单位股票和一份看涨期权的空头。两个月后组合的价值或者为2^-729或者为23厶-529。如果:27乂729=23厶-529…=50即资产组合的价值为621(27,50-729or23,50-529)。因此对组合来说,其收益是无风险的。组合的现值为:25,50-f,其中f为期权的价值。因为组合必须以无风险的利率盈利所以:(25,50-f)e0A,n„621…f„639.3方法二(风险中性):直接利用公式:方法二(风险中性):f„e—rT[Pfu+€1-P)/]erT-d其中:P„~U-T22723e0-1x19—092有题意u„—„1.08,d„—„0.92…p„—-—„0.605025251.08-0.92
所以f„e,0.1叮x…0.6050x729+(1—0.6050)x529]„639.3美元10.5、某个股票现价为50美元。有连续2个时间步,每个时间步的步长为3个月,每个单步二叉树的股价或者上涨6%或者下跌5%。无风险利率年利率为5%(连续复利)。执行价格为51美元,有效期为6个月的欧式看涨期权的价值为多少?风险中性概率公式可得:e产t一dP„L~e0.05x312-0.95e产t一dP„L~e0.05x312-0.951.06-0.95„0.5689(u„1+6%,d„1-5%)5391047.5066.185.18501.63545.125050,35二叉树图如上所示对于最高的末端节点(两个向上的复合),期权收益为56.18-51=5.18美元,而在其他情况中的收益为零。因此,期权的价值为:f„ef„e,2宀p2fuu+2p(1-p)fud+(1-P)2f1„e-0.05x612x0.56892x5.18„1.635dd10.6、考虑10.5中的情况,执行价格为51美元,有效期为6个月的欧式看跌期权的价值为多少?证明欧式看涨期权和看跌期权满足看涨看跌期权平价关系。如果看跌期权是美式期权在树图上的任何节点,提前执行期权是否会更优惠?二叉树图:530.2775010.6、考虑10.5中的情况,执行价格为51美元,有效期为6个月的欧式看跌期权的价值为多少?证明欧式看涨期权和看跌期权满足看涨看跌期权平价关系。如果看跌期权是美式期权在树图上的任何节点,提前执行期权是否会更优惠?二叉树图:530.27750A2,8661.37656.18050.350.6545.1255.875(1)处于中间的末端节点,将会得到收益为51-50.35=0.65美元,处于最下面的末端节点,将会得到的收益为51-45.125=5.875美元。因此期权的价值为:f„e-2宀p2f+2p(1一p)f+(1—p)2f]Luuuddd-„e-0.05x612x0x0.56892+2x0.5689x(1,0.5689)x0.65+5.875x(1,0.5689)2]„1.376⑵看跌-看涨期权平价关系:C+Xe,rT„P+S0
看跌期权加上股票价格的值为:1.376€50=51.376看涨期权加上执行价格的现值为:1.635+51e,0.05x612二51.376二者相等,从而验证了看跌-看涨期权平价关系。(3)为了检验是否值得提前执行该期权,应该比较从立即执行中得到的每个节点的收入计算出来的期权的值。在节点C,立即执行的收益为51-47.5=3.5美元。因为这个值大于2.8664美元,期权应该在这个节点执行,而不在节点A或者节点B执行。也就是说,在价格树的任意节点上,提前执行并不一定是最优的。11.1、目前股票价格为50美元,假设该股票的期望收益率为18%,波动率为30%。两年内此种股票价格的概率分布是什么?计算该分布的均值和标准差(95%的置信区间)。在本题中,S=50,„=0.18,q=0.3,未来两年股票价格S符合对数正态分布:0TlnS〜©(0.09\1ln50+0.18-x2,0.32x2Tk2J即:lnS〜©(4.18,0.18”T股票价格的均值:E(S)二Se„(t-1)二50xe0.18x2=71.67T0股票价格的标准差:二Se„(t,tZe…2(t,t)一1二50xe2x0.18、;e0.3x03x2—1二31.83在给定95%的置信度下,lnS的置信区间为:T•4.18—1.96x0.42,4.18€1.96x0.42]即:b.35,5.01]股票价格S]在95%的置信度下的置信区间是:[e3.35,e5・0111.2、股票当前的价格为50美元,假定其收益率期望为15%,波动率为25%。在两年内的股票收益率(连续复利)的概率分布是什么?.(…2…2'在本题中,„=0.15,…二0.25,根据公式x〜©„,可,〒可得2年期连续复利的k2T丿回报率的概率分布是:©0.15回报率的概率分布是:©0.15-0.2520.252)即©“0.11875,0.03125”,预期的价值回报率为每年11.875%,标准差为每年17.7%11.3、某股票价格服从几何布朗运动,其中收益率期望为16%,波动率为35%,股票的当前价格为38美元。(1)一个该股票上具有执行价格为40美元,期限为6个月的欧式看涨期权被行使的概率为多少?(b)—个该股票上具有同样执行价格及期限的欧式看跌期权被行使的概率为多少?
要求的概率是6个月后股票价格超过40美元的概率。假设6个月后股票的价格是S'则有:ff€2„„ff0.352„„lnS〜©lnS+T,€2T=©ln38+0.16-x0.5,0.352x0.5T0<<2丿丿<<2丿丿即:lnS〜©(3.687,0.06125)T因为ln40=3.689,则要求的概率为:1-Nf3.689—3.687„二1-N(0.008)=1-0.5032二0.4968<70.06125丿对于看跌期权,要求的概率是6个月后股票价格低于40美元的概率,同样的方法可得其值为1-0.4968=0.5032.11.11考虑一个无股息股票的期权,股票价格为30美元,执行价格为29美元,无风险利率为每年5%,波动率为每年25%,期权期限为4个月。如果期权是欧式看涨期权,其价格为多少?如果期权是美式看涨期权,其价格为多少?如果期权是欧式看跌期权,其价格为多少?验证看跌一看涨期权平价关系式。在本题中,S=30,K=29,r=0.05,€=0.25,T=4;12=0.3333,且有:0■ln(SK)+C+€22)Tln(3029)+(0.05+0.2522)x0.3333d二0二二0.4225€、汀0.2^/0.3333ln(SK)+C-€22)Tln(3029)+(0.05-0.2522)x0.3333d二0二二0.2782€、汀0.25J0.3333N(N(d)=N(0.4225)=0.66371N(d)=N(0.2782)=0.60962N(N(-d)=N(-0.4225)=0.33631N(-d)=N(0.6096)=0.39042(a)欧式看涨期权的价格是:c=SN(d)-Ke-rTN(d)=30x0.6637一29xe-0.05x0.3333x0.6096=2.52012b)美式看涨期权的价格与欧式看涨的价格一致,也是2.52美元c)欧式看跌期权的价格是:p=Ke-rTN(-d)-SN
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁铁道职业技术学院《思想政治教育研究方法》2023-2024学年第二学期期末试卷
- 今年国庆餐饮活动方案
- 今日公司直播活动方案
- 今日阳泉活动策划方案
- 生态保护2025:监测网络建设实施方案与生物多样性保护
- 家居新零售:2025年线上线下融合模式下的消费者需求预测报告
- 《整数四则运算与基本技巧:二年级数学教学》
- 2025年肿瘤精准医疗临床实践中的生物信息学应用分析
- 对春天的感慨抒情作文10篇
- 诗词赏析课:古典诗歌意境的探讨
- 硅橡胶模具合同(2篇)
- 农村三资管理课件
- 超星尔雅学习通《形势与政策(2025春)》章节测试及答案(真题汇编)
- 落地式脚手架专项施工方案
- 2025-2030中国保安服务行业发展分析及发展趋势预测报告
- (完整版)外国美术史
- 2025年度线上线下返利合作框架协议
- 2024北京朝阳区初一(下)期末语文试题和答案
- 充电员安全培训课件
- 2025-2030年坚果仁能量棒健康配方行业深度调研及发展战略咨询报告
- 工程挂靠协议合同
评论
0/150
提交评论