




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年黑龙江省哈尔滨市第一四八中学高一数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为( ).A.1 B.
C. D.参考答案:D2.右图给出的是计算的值的一个程序框图,其中判断框内应填入的条件是
(
)A.i>10
B.i<10C.i>20
D.i<20参考答案:A3.若且,则在(
)A.第一象限 B.第二象限
C.第三象限 D.第四象限参考答案:B∵,∴在第二象限或第四象限∵,∴在第一、二象限或y轴的正半轴,∴在第二象限故选:B
4.直线l:与圆C:交于A,B两点,则当弦AB最短时直线l的方程为A. B.C. D.参考答案:A【分析】先求出直线经过的定点,再求出弦AB最短时直线l的方程.【详解】由题得,所以直线l过定点P.当CP⊥l时,弦AB最短.由题得,所以.所以直线l的方程为.故选:A【点睛】本题主要考查直线过定点问题,考查直线方程的求法,考查直线和圆的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.不等式的解集为(
)A. B.C. D.参考答案:A【分析】根据分式不等式解法,化为一元二次不等式,进而通过穿根法得到不等式解集。【详解】不等式可化简为且根据零点和穿根法,该分式不等式的解集为所以选A【点睛】本题考查了分式不等式的解法,切记不能直接去分母解不等式,属于基础题。6.设Sn是等差数列{an}的前n项和,若,则()A. B. C.2 D.参考答案:A【分析】题目已知数列为等差数列,且知道某两项的比值,要求某两个前项和的比值,故考虑用相应的等差数列前项和公式,将要求的式子转化为已知条件来求解.【详解】,故选A.【点睛】本小题主要考查等差数列前项和公式和等差中项的应用.等差数列求和公式有两个,它们分别是,和.在解题过程中,要选择合适的公式来解决.本题中已知项之间的比值,求项之间的比值,故考虑用第二个公式来计算,简化运算.7.点到点的距离相等,则x的值为(
)A.
B.1
C.
D.2
参考答案:B略8.不等式恒成立,则的取值范围为(
)A. B.C.
D.参考答案:D9.从装有2个红球和2个白球的袋内任取2个球,则互斥而不对立的两个事件是()A.至少有1个红球和全是白球B.至少有1个白球和全是白球C.恰有1个白球和恰有两个白球D.至少有1个白球和全是红球参考答案:C10.已知的值等于
(
)
(A)
(B)-
(C)0
(D)1
参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.若点在幂函数的图象上,则
.参考答案:12.点在直线上,则最小值为
.参考答案:913.已知f(x)=log2(4﹣ax)在区间[﹣1,3]上是增函数,则a的取值范围是.参考答案:﹣4<a<0【考点】对数函数的图象与性质;复合函数的单调性.【专题】计算题;转化思想;函数的性质及应用.【分析】若f(x)=log2(4﹣ax)在区间[﹣1,3]上是增函数,则内函数t=4﹣ax在区间[﹣1,3]上是增函数,且恒为正,进而得到答案.【解答】解:∵f(x)=log2(4﹣ax)在区间[﹣1,3]上是增函数,故内函数t=4﹣ax在区间[﹣1,3]上是增函数,且恒为正,故,解得:﹣4<a<0,故答案为:﹣4<a<0.【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质是解答的关键.14.函数的单调递减区间为_____________.参考答案:(-2,1) 15.若函数f(x)的定义域是[0,4],则函数f(2x﹣3)的定义域是.参考答案:【考点】函数的定义域及其求法.【专题】计算题;函数思想;数学模型法;函数的性质及应用.【分析】由已知函数的定义域,可得0≤2x﹣3≤4,解此不等式得答案.【解答】解:∵函数f(x)的定义域是[0,4],则由0≤2x﹣3≤4,得,∴函数f(2x﹣3)的定义域是.故答案为:.【点评】本题考查函数的定义域及其求法,关键是掌握该类问题的求解方法,是基础题.16.已知函数,若函数g(x)=|f(x)|﹣a有四个不同零点x1,x2,x3,x4,且x1<x2<x3<x4,则的最小值为
.参考答案:2016【考点】根的存在性及根的个数判断.【分析】画出函数y=|f(x)|的图象,由题意得出a的取值范围和x1x2,x3+x4的值,再利用二次函数配方法即可求出最小值.【解答】解:由题意,画出函数y=|f(x)|的图象,如图所示,又函数g(x)=a﹣|f(x)|有四个零点x1,x2,x3,x4,且x1<x2<x3<x4,所以0<a≤2,且log2(﹣x1)=﹣log2(﹣x2)=2﹣x3=x4﹣2,所以x1x2=1,x3+x4=4,则=a2﹣2a+2017=(a﹣1)2+2016,当a=1时,取得最小值2016.故答案为:2016.17.化简,得其结果为
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知=(sinx,m+cosx),=(cosx,﹣m+cosx),且f(x)=(1)求函数f(x)的解析式;(2)当x∈[﹣,]时,f(x)的最小值是﹣4,求此时函数f(x)的最大值,并求出相应的x的值.参考答案:【考点】三角函数的最值;平面向量数量积的运算.【专题】函数的性质及应用.【分析】(1)f(x)=×=(sinx,m+cosx)×(cosx,﹣m+cosx)=.(2)函数f(x)=,根据,求得,得到,从而得到函数f(x)的最大值及相应的x的值.【解答】解:(1)f(x)=×=(sinx,m+cosx)×(cosx,﹣m+cosx),即=,(2)=,由,∴,∴,∴,∴m=±2,∴fmax(x)=1+﹣4=﹣,此时,.【点评】本题考查两个向量的数量积公式,三角函数性质及简单的三角变换,根据三角函数的值求角,化简函数f(x)的解析式,是解题的关键,属于中档题.19.(12分)直三棱柱ABC﹣A1B1C1中,AB=AA1,∠CAB=.(Ⅰ)证明:CB1⊥BA1;(Ⅱ)已知AB=2,BC=,求三棱锥C1﹣ABA1的体积.参考答案:考点: 直线与平面垂直的性质;棱柱、棱锥、棱台的体积.专题: 计算题;证明题.分析: (I)连接AB1,根据ABC﹣A1B1C1是直三棱柱,得到平面ABC⊥平面ABB1A1,结合AC⊥AB,可得AC⊥平面ABB1A1,从而有AC⊥BA1,再在正方形ABB1A1中得到AB1⊥BA1,最后根据线面垂直的判定定理,得到BA1⊥平面ACB1,所以CB1⊥BA1;(II)在Rt△ABC中,利用勾股定理,得到AC==1,又因为直三棱柱ABC﹣A1B1C1中,A1C1=AC=1且AC⊥平面ABB1A1,得到A1C1是三棱锥C1﹣ABA1的高,且它的长度为1.再根据正方形ABB1A1面积得到△ABA1的面积,最后根据锥体体积公式,得到三棱锥C1﹣ABA1的体积为.解答: (I)连接AB1,∵ABC﹣A1B1C1是直三棱柱,∴平面ABC⊥平面ABB1A1,又∵平面ABC∩平面ABB1A1=AB,AC⊥AB,∴AC⊥平面ABB1A1,∵BA1?平面ABB1A1,∴AC⊥BA1,∵矩形ABB1A1中,AB=AA1,∴四边形ABB1A1是正方形,∴AB1⊥BA1,又∵AB1、CA是平面ACB1内的相交直线,∴BA1⊥平面ACB1,∵CB1?平面ACB1,∴CB1⊥BA1;(II)∵AB=2,BC=,∴Rt△ABC中,AC==1∴直三棱柱ABC﹣A1B1C1中,A1C1=AC=1又∵AC∥A1C1,AC⊥平面ABB1A1,∴A1C1是三棱锥C1﹣ABA1的高.∵△ABA1的面积等于正方形ABB1A1面积的一半∴=AB2=2三棱锥C1﹣ABA1的体积为V=××A1C1=.点评: 本题根据底面为直角三角形的直三棱柱,证明线面垂直并且求三棱锥的体积,着重考查了直线与平面垂直的性质与判定和锥体体积公式等知识点,属于中档题.20.(12分)已知f(x)=log2(1﹣x)﹣log2(1+x).(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性并证明;(3)求使f(x)>0的x的取值集合.参考答案:【考点】奇偶性与单调性的综合;函数的定义域及其求法.【分析】(1)由题意可得,即可求函数f(x)的定义域;(2)定义域关于原点对称,利用奇函数的定义判断并证明函数f(x)的奇偶性;(3)由f(x)>0得log2(1﹣x)>log2(1+x),即可求使f(x)>0的x的取值集合.【解答】解:(1)由题意可得,∴﹣1<x<1,函数f(x)的定义域为(﹣1,1)…(4分)(2)因为定义域关于原点对称,又f(﹣x)=log2(1+x)﹣log2(1﹣x)=﹣f(x),所以f(x)为奇函数;…(8分)(3)由f(x)>0得log2(1﹣x)>log2(1+x),所以1﹣x>1+x,得x<0,而﹣1<x<1,解得﹣1<x<0,所以使f(x)>0的x的取值集合是{x|﹣1<x<0}…(12分)【点评】本题考查函数的定义域,考查奇函数的定义,考查学生的计算能力,属于中档题.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年免疫治疗在自身免疫性皮肤病伴皮肤萎缩治疗中的应用突破报告
- 2025年文化产业园区公共服务平台建设中的线上线下融合趋势研究报告
- 产业园区财政管理体系构建
- 唇钉护理操作指南
- 干部培训体系建设
- 煤矿改建项目可行性研究报告(范文模板)
- 离心机生产线建设项目可行性研究报告(参考)
- 海上风电600MW项目规划设计方案(参考)
- 超微竹粉项目可行性研究报告
- PCB智能制造产业基地建设项目可行性研究报告(模板范文)
- 降本增效理念在建筑中的应用试题及答案
- 提高安全意识共建平安校园
- 2025年高考作文备考之热点时事素材资料
- 2025安徽蚌埠市龙子湖区产业发展有限公司招聘22人笔试参考题库附带答案详解
- 华为笔试题目大全及答案
- 产业研究报告-中国水环境监测行业发展现状、市场规模及投资前景分析(智研咨询)
- 偿二代下我国财险公司偿付能力影响因素的深度剖析与实证研究
- 清代文学教案
- 2025-2030中国手机充电器行业市场发展现状及竞争策略与投资前景研究报告
- 【MOOC】理解马克思-南京大学 中国大学慕课MOOC答案
- JGT266-2011 泡沫混凝土标准规范
评论
0/150
提交评论