版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
#参考文献苏欣,刘光洁•带有预算费用约束的多地点报童模型[J].长春工程学院学报(自然科学版).2003年,4(2):23-28.LauH.S.Thenewsboyproblemunderalternativeoptimizationobjectives[J].JournaloftheOperationsResearchSociety,1980,31:525-535.AgrawalV,SeshadriS.Impactofuncertaintyandriskaversiononpriceandorderquantityinthenewsvendorproblem[J].Manufacturing&ServiceOperationsManagement,2000,2:410-423.苏欣,林正华,杨丽.一次订购季节性销售的一种扩展报童模型[J].吉林大学学报(理学版),2003,41(3):314-318.高尚•价格有折扣的报童问题[J].华东船舶工业学院学报(自然科学版),2001年8月,15(4):65-68.姚洪义,高云静•价格竞争下基于报童问题的需求模型分析[J].重庆大学学报(自然科学版),2007年11月,30(11):144-147.HolmstromB.Moralhazardandobservability[J]BellJournalofEconomics1979,10:74291.蔡清波,鲁其辉,朱道立预测精度随时间变化的报童模型分析[J].预测,2003年,5(10):43-46.李明琨,汪凯仁,方芳•基于时间因素的报童问题理论方法研究[J].系统工程理论方法应用,2003年6月,12(2):146-152.吴鹏•考虑回收再制造的报童模型扩展[J]・清华大学学报(哲学社会科学版),2006年,1(21):71-76.宋海涛,林正华,苏欣带有二次订购和二次销售的报童问题[J].经济数学,2003年3月,20(1):73-80.刘丽华,曾玲•可追加订购报童问题的模糊机会约束规划模型[J].汕头大学学报(自然科学版),2007年2月,22(1):2-6.于春云,赵希男,彭艳东,潘德惠•模糊随机需求模式下的扩展报童模型与求解算法[J].系统工程,2006年9月,24(9):103-107.宋海涛,王秋月•三角分布下可追加订购的报童问题最优解[J].内蒙古民族大学学报(自然科学版),2003年8月,18(4):289-292.宋海涛,林正华.二次降价销售的报童问题[J].吉林大学学报(理学版),2004年10月,42(4):42-47.鲍芳•基于数据挖掘方法的产品市场需求预测[J].决策参考,2006年,6(12):44-50.致谢在论文完成之际,谨向多年来关心、支持我的人们致以最诚挚的谢意!首先感谢我的导师陈培金老师和刘合翔老师在近半年来对我毕业论文的悉心指导!从选题到考题报告,从文献综述到中期报告,从论文正文到以后建议和指正,都体现了两位老师的细心负责的优良教风和渊博的知识,让我受益匪浅。感谢家人和课任教师学校对我这么多年来的悉心栽培,没有你们也就没有今天的我,学校让我感受到了家的温暖,同学让我感受到了家人般的关爱,在大学4年中也提供了很大的帮助。衷心地向你们说声谢谢!最后衷心祝愿所有的同学都能工作顺利,所有帮过我的老师能多出成果、心想事成,希望学校能更上一个台阶,忠心感谢在百忙之中抽出宝贵时间对此论文进行评阅与审议的老师们。浙江林学院本(专)科生毕业设计(论文)任务书设计(论文)题目:基于报童模型的市场需求预测学院名称:信息工程学院专业班级:信息043学生姓名:郑欢欢学号:200405021307指导教师:陈培金、刘合翔学科负责人:1.设计(论文)的主要任务和目标目标:通过查阅大量的文献资料,自主学习并掌握丰富、全面的有关报童模型的相关知识;了解报童模型产生的原因、发展状况以及研究现状;要求深刻理解并掌握报童模型的概念及其内涵,了解报童模型适用的研究环境;要求能熟练的运用报童模型针对企业的生产困境进行分析研究,提出解决方法;要求能运用报童模型对企业进行市场需求预测,并要求能计算相应的绩效指标。主要任务:阅读大量有关报童模型的文献;掌握报童模型的概念及其内涵;针对课题研究的问题,对温州鹏昌皮革有限公司进行实地调查;收集论论研究所需要的相关数据;运用报童模型对所收集到的数据进行数据分析;根据数据分析的结果,对企业的生产困境提出解决方法;说明进行论文研究的意义;完成论文;2.设计(论文)的主要内容运用报童模型对企业进行全面的数据分析,根据企业的历史销售状况和目前企业的生产状况确定企业对产品的最优订购量。以求达到减少原材料无谓的浪费、降低生产成本;减少库存量,提高仓库利用效率;提高订单完成率,获得最佳效益的目的。论文应包括一下几方面的内容:运用报童模型预测企业利润最大化的最佳订购量;运用报童模型预测在达到一定目标订单完成率要求下的最佳订购量;运用报童模型预测在达到一定目标存货满足率要求下的最佳订购量;数据分析实时展现,帮助管理层作出正确的决策分析;对温州鹏昌皮革有限公司运用报童模型进行预测提出自己的观点和意见;对温州鹏昌皮革有限公司的生产状况进行分析及预测。3.设计(论文)的基本要求报童模型的概念认识和熟悉市场需求预测的概念认识和熟悉对温州鹏昌皮革有限公司的生产状况进行分析及预测分析各项绩效指标对温州鹏昌皮革有限公司运用报童模型进行预测提出自己的观点和意见4.主要参考文献苏欣,刘光洁•带有预算费用约束的多地点报童模型[J].长春工程学院学报(自然科学版).2003年,4(2):23-28.LauH.S.Thenewsboyproblemunderalternativeoptimizationobjectives[J].JournaloftheOperationsResearchSociety,1980,31:525-535.AgrawalV,SeshadriS.Impactofuncertaintyandriskaversiononpriceandorderquantityinthenewsvendorproblem[J].Manufacturing&ServiceOperationsManagement,2000,2:410-423.苏欣,林正华,杨丽.一次订购季节性销售的一种扩展报童模型[J].吉林大学学报(理学版),2003,41(3):314-318.高尚•价格有折扣的报童问题[J].华东船舶工业学院学报(自然科学版),2001年8月,15(4):65-68.姚洪义,高云静•价格竞争下基于报童问题的需求模型分析[J].重庆大学学报(自然科学版),2007年11月,30(11):144-147.HolmstromB.Moralhazardandobservability[J]BellJournalofEconomics1979,10:74291.蔡清波,鲁其辉,朱道立预测精度随时间变化的报童模型分析[J].预测,2003年,5(10):43-46.李明琨,汪凯仁,方芳•基于时间因素的报童问题理论方法研究[J].系统工程理论方法应用,2003年6月,12(2):146-152.吴鹏•考虑回收再制造的报童模型扩展[J]・清华大学学报(哲学社会科学版),2006年,1(21):71-76.宋海涛,林正华,苏欣带有二次订购和二次销售的报童问题[J].经济数学,2003年3月,20(1):73-80.文U丽华,曾玲•可追加订购报童问题的模糊机会约束规划模型[J].汕头大学学报(自然科学版),2007年2月,22(1):2-6.于春云,赵希男,彭艳东,潘德惠•模糊随机需求模式下的扩展报童模型与求解算法[J].系统工程,2006年9月,24(9):103-107.宋海涛,王秋月•三角分布下可追加订购的报童问题最优解[J].内蒙古民族大学学报(自然科学版),2003年8月,18(4):289-292.宋海涛,林正华.二次降价销售的报童问题[J].吉林大学学报(理学版),2004年10月,42(4):42-47.鲍芳•基于数据挖掘方法的产品市场需求预测[J].决策参考,2006年,6(12):44-50.5.进度安排设计(论文)各阶段名称起止日期1查阅资料、调查研究、资料收集、整理、外文翻译2007.07——-2007.092写出开题报告、文件综述,听取导师意见,进行修改2007.10——-2008.013材料补充、分析,完成论文初稿2008.02——-2008.034听取导师意见,论文修改充实2008.04——-2008.055论文答辩2008.5注:一式三份,学院、指导教师、学生各一份,由指导教师填写。英语原文1:DemandForecastingTheImportanceofDemandForecastingForecastingproductdemandiscrucialtoanysupplier,manufacturer,orretailer.Forecastsoffuturedemandwilldeterminethequantitiesthatshouldbepurchased,produced,andshipped.Demandforecastsarenecessarysincethebasicoperationsprocess,movingfromthesuppliers'rawmaterialstofinishedgoodsinthecustomers'hands,takestime.Mostfirmscannotsimplywaitfordemandtoemergeandthenreacttoit.Instead,theymustanticipateandplanforfuturedemandsothattheycanreactimmediatelytocustomerordersastheyoccur.Inotherwords,mostmanufacturers"maketostock"ratherthan"maketoorder"一theyplanaheadandthendeployinventoriesoffinishedgoodsintofieldlocations.Thus,onceacustomerordermaterializes,itcanbefulfilledimmediately一sincemostcustomersarenotwillingtowaitthetimeitwouldtaketoactuallyprocesstheirorderthroughoutthesupplychainandmaketheproductbasedontheirorder.Anordercyclecouldtakeweeksormonthstogobackthroughpartsuppliersandsub-assemblers,throughmanufactureoftheproduct,andthroughtotheeventualshipmentoftheordertothecustomer.Firmsthatofferrapiddeliverytotheircustomerswilltendtoforceallcompetitorsinthemarkettokeepfinishedgoodinventoriesinordertoprovidefastordercycletimes.Asaresult,virtuallyeveryorganizationinvolvedneedstomanufactureoratleastorderpartsbasedonaforecastoffuturedemand.Theabilitytoaccuratelyforecastdemandalsoaffordsthefirmopportunitiestocontrolcoststhroughlevelingitsproductionquantities,rationalizingitstransportation,andgenerallyplanningforefficientlogisticsoperations.Ingeneralpractice,accuratedemandforecastsleadtoefficientoperationsandhighlevelsofcustomerservice,whileinaccurateforecastswillinevitablyleadtoinefficient,highcostoperationsand/orpoorlevelsofcustomerservice.Inmanysupplychains,themostimportantactionwecantaketoimprovetheefficiencyandeffectivenessofthelogisticsprocessistoimprovethequalityofthedemandforecastsGeneralApproachestoForecastingAllfirmsforecastdemand,butitwouldbedifficulttofindanytwofirmsthatforecastdemandinexactlythesameway.Overthelastfewdecades,manydifferentforecastingtechniqueshavebeendevelopedinanumberofdifferentapplicationareas,includingengineeringandeconomics.Manysuchprocedureshavebeenappliedtothepracticalproblemofforecastingdemandinalogisticssystem,withvaryingdegreesofsuccess.Mostcommercialsoftwarepackagesthatsupportdemandforecastinginalogisticssystemincludedozensofdifferentforecastingalgorithmsthattheanalystcanusetogeneratealternativedemandforecasts.Whilescoresofdifferentforecastingtechniquesexist,almostanyforecastingprocedurecanbebroadlyclassifiedintooneofthefollowingfourbasiccategoriesbasedonthefundamentalapproachtowardstheforecastingproblemthatisemployedbythetechnique.JudgmentalApproaches.Theessenceofthejudgmentalapproachistoaddresstheforecastingissuebyassumingthatsomeoneelseknowsandcantellyoutherightanswer.Thatis,inajudgment-basedtechniquewegathertheknowledgeandopinionsofpeoplewhoareinapositiontoknowwhatdemandwillbe.Forexample,wemightconductasurveyofthecustomerbasetoestimatewhatoursaleswillbenextmonth.Bytheirnature,judgment-basedforecastsusesubjectiveandqualitativedatatoforecastfutureoutcomes.Theyinherentlyrelyonexpertopinion,experience,judgment,intuition,conjecture,andother"soft"data.Suchtechniquesareoftenusedwhenhistoricaldataarenotavailable,asisthecasewiththeintroductionofanewproductorservice,andinforecastingtheimpactoffundamentalchangessuchasnewtechnologies,environmentalchanges,culturalchanges,legalchanges,andsoforth.Someofthemorecommonproceduresincludethefollowing:1.Surveys.Thisisa"bottomup"approachwhereeachindividualcontributesapieceofwhatwillbecomethefinalforecast.Forexample,wemightpollorsampleourcustomerbasetoestimatedemandforacomingperiod.Alternatively,wemightgatherestimatesfromoursalesforceastohowmucheachsalespersonexpectstosellinthenexttimeperiod.Theapproachisatleastplausibleinthesensethatweareaskingpeoplewhoareinapositiontoknowsomethingaboutfuturedemand.Ontheotherhand,inpracticetherehaveproventobeseriousproblemsofbiasassociatedwiththesetools.Itcanbedifficultandexpensivetogatherdatafromcustomers.Historyalsoshowsthatsurveysof"intentiontopurchase"willgenerallyover-estimateactualdemand-ikingaproductisonething,butactuallybuyingitisoftenquiteanother.Salespeoplemayalsointentionally(orevenunintentionally)exaggerateorunderestimatetheirsalesforecastsbasedonwhattheybelievetheirsupervisorswantthemtosay.Ifthesalesforce(orthecustomerbase)believesthattheirforecastswilldeterminetheleveloffinishedgoodsinventorythatwillbeavailableinthenextperiod,theymaybesorelytemptedtoinflatetheirdemandestimatessoastoinsuregoodinventoryavailability.Evenifthesebiasescouldbeeliminatedorcontrolled,anotherseriousproblemwouldprobablyremain.Salespeoplemightbeabletoestimatetheirweeklydollarvolumeortotalunitsales,buttheyarenotlikelytobeabletodevelopcredibleestimatesattheSKUlevelthatthelogisticssystemwillrequire.Forthesereasonsitwillseldombethecasethatthesetoolswillformthebasisofasuccessfuldemandforecastingprocedureinalogisticssystem.Consensusmethods.Asanalternativetothe"bottom-up"surveyapproaches,consensusmethodsuseasmallgroupofindividualstodevelopgeneralforecasts.Ina“JuryofExecutiveOpinion”,forexample,agroupofexecutivesinthefirmwouldmeetanddevelopthroughdebateanddiscussionageneralforecastofdemand.Eachindividualwouldpresumablycontributeinsightandunderstandingbasedontheirviewofthemarket,theproduct,thecompetition,andsoforth.Onceagain,whiletheseexecutivesareundoubtedlyexperienced,theyarehardlydisinterestedobservers,andtheopportunityforbiasedinputsisobvious.Amoreformalconsensusprocedure,called“TheDelphiMethod”,hasbeendevelopedtohelpcontroltheseproblems.Inthistechnique,apanelofdisinterestedtechnicalexpertsispresentedwithaquestionnaireregardingaforecast.Theanswersarecollected,processed,andre-distributedtothepanel,makingsurethatallinformationcontributedbyanypanelmemberisavailabletoallmembers,butonananonymousbasis.Eachexpertreflectsonthegatheringopinion.Asecondquestionnaireisthendistributedtothepanel,andtheprocessisrepeateduntilaconsensusforecastisreached.Consensusmethodsareusuallyappropriateonlyforhighlyaggregateandusuallyquitelong-rangeforecasts.Onceagain,theirabilitytogenerateusefulSKUlevelforecastsisquestionable,anditisunlikelythatthisapproachwillbethebasisforasuccessfuldemandforecastingprocedureinalogisticssystem.Judgment-basedmethodsareimportantinthattheyareoftenusedtodetermineanenterprise'sstrategy.Theyarealsousedinmoremundanedecisions,suchasdeterminingthequalityofapotentialvendorbyaskingforreferences,andtherearemanyotherreasonableapplications.Itistruethatjudgmentbasedtechniquesareaninadequatebasisforademandforecastingsystem,butthisshouldnotbeconstruedtomeanthatjudgmenthasnoroletoplayinlogisticsforecastingorthatsalespeoplehavenoknowledgetobringtotheproblem.Infact,itisoftenthecasethatsalesandmarketingpeoplehavevaluableinformationaboutsalespromotions,newproducts,competitoractivity,andsoforth,whichshouldbeincorporatedintotheforecastsomehow.Manyorganizationstreatsuchdataasadditionalinformationthatisusedtomodifytheexistingforecastratherthanasthebaselinedatausedtocreatetheforecastinthefirstplace.ExperimentalApproaches.Anotherapproachtodemandforecasting,whichisappealingwhenanitemis"new"andwhenthereisnootherinformationuponwhichtobaseaforecast,istoconductademandexperimentonasmallgroupofcustomersandtoextrapolatetheresultstoalargerpopulation.Forexample,firmswilloftentestanewconsumerproductinageographicallyisolated"testmarket"toestablishitsprobablemarketshare.Thisexperienceisthenextrapolatedtothenationalmarkettoplanthenewproductlaunch.Experimentalapproachesareveryusefulandnecessaryfornewproducts.Butforexistingproductsthathaveanaccumulatedhistoricaldemandrecorditseemsintuitivethatdemandforecastsshouldsomehowbebasedonthisdemandexperience.Formostfirms(withsomeverynotableexceptions)thelargemajorityofSKUsintheproductlinehavelongdemandhistories.Intheearlystagesofnewproductdevelopmentitisimportanttogetsomeestimateofthelevelofpotentialdemandfortheproduct.Avarietyofmarketresearchtechniquesareusedtothisend.CustomerSurveysaresometimesconductedoverthetelephoneoronstreetcorners,atshoppingmalls,andsoforth.Thenewproductisdisplayedordescribed,andpotentialcustomersareaskedwhethertheywouldbeinterestedinpurchasingtheitem.Whilethisapproachcanhelptoisolateattractiveorunattractiveproductfeatures,experiencehasshownthat"intenttopurchase"asmeasuredinthiswayisdifficulttotranslateintoameaningfuldemandforecast.Thisfallsshortofbeingatrue“demandexperiment”.ConsumerPanelsarealsousedintheearlyphasesofproductdevelopment.Hereasmallgroupofpotentialcustomersarebroughttogetherinaroomwheretheycanusetheproductanddiscussitamongthemselves.Panelmembersareoftenpaidanominalamountfortheirparticipation.Likesurveys,theseproceduresaremoreusefulforanalyzingproductattributesthanforestimatingdemand,andtheydonotconstitutetrue“demandexperiments”becausenopurchasestakeplace.TestMarketingisoftenemployedafternewproductdevelopmentbutpriortoafull-scalenationallaunchofanewbrandorproduct.Theideaistochoosearelativelysmall,reasonablyisolated,yetsomehowdemographically"typical"marketarea.IntheUnitedStates,thisisoftenamediumsizedcitysuchasCincinnatiorBuffalo.Thetotalmarketingplanfortheitem,includingadvertising,promotions,anddistributiontactics,is"rolledout"andimplementedinthetestmarket,andmeasurementsofproductawareness,marketpenetration,andmarketsharearemade.Whilethesedataareusedtoestimatepotentialsalestoalargernationalmarket,theemphasishereisusuallyon"fine-tuning"thetotalmarketingplanandinsuringthatnoproblemsorpotentialembarrassmentshavebeenoverlooked.Forexample,andextensivelytest-marketeditsPringlespotatochipproductmadewiththefatsubstituteOlestratoassurethattheproductwouldbebroadlyacceptabletothemarket.Relational/CausalApproaches.Theassumptionbehindacausalorrelationalforecastisthat,simplyput,thereisareasonwhypeoplebuyourproduct.Ifwecanunderstandwhatthatreason(orsetofreasons)is,wecanusethatunderstandingtodevelopademandforecast.Forexample,ifwesellumbrellasatasidewalkstand,wewouldprobablynoticethatdailydemandisstronglycorrelatedtotheweather-wesellmoreumbrellaswhenitrains.Oncewehaveestablishedthisrelationship,agoodweatherforecastwillhelpusorderenoughumbrellastomeettheexpecteddemand."TimeSeries"Approaches.Atimeseriesprocedureisfundamentallydifferentthanthefirstthreeapproacheswehavediscussed.Inapuretimeseriestechnique,nojudgmentorexpertiseoropinionissought.Wedonotlookfor"causes"orrelationshipsorfactorswhichsomehow"drive"demand.Wedonottestitemsorexperimentwithcustomers.Bytheirnature,timeseriesproceduresareappliedtodemanddatathatarelongitudinalratherthancross-sectional.Thatis,thedemanddatarepresentexperiencethatisrepeatedovertimeratherthanacrossitemsorlocations.Theessenceoftheapproachistorecognize(orassume)thatdemandoccursovertimeinpatternsthatrepeatthemselves,atleastapproximately.Ifwecandescribethesegeneralpatternsortendencies,withoutregardtotheir"causes",wecanusethisdescriptiontoformthebasisofaforecast.Inonesense,allforecastingproceduresinvolvetheanalysisofhistoricalexperienceintopatternsandtheprojectionofthosepatternsintothefutureinthebeliefthatthefuturewillsomehowresemblethepast.Thedifferencesinthefourapproachesareinthewaythis"searchforpattern"isconducted.Judgmentalapproachesrelyonthesubjective,ad-hocanalysesofexternalindividuals.Experimentaltoolsextrapolateresultsfromsmallnumbersofcustomerstolargepopulations.Causalmethodssearchforreasonsfordemand.Timeseriestechniquessimplyanalyzethedemanddatathemselvestoidentifytemporalpatternsthatemergeandpersist.外文翻译1:需求预测需求预测的重要性产品需求预测,对任何供应商、制造商或零售商都是至关重要的。预测未来的需求将决定应购买、生产、出货的数量。需求预测是必要的,因为基本操作过程中,从供应商的原材料到成品的商品,到顾客手中,需要一定的时间。大多数的企业不能简单地等待需求出现,然后再作出反应。相反,他们必须预先考虑并规划未来的需求,使他们能在客户订单出现后立即作出反应。或者换句话说,大多数厂家是“为库存”,而不是“为订单”而生产——他们提前计划,然后再调配库存产成品到目标地点。因此,一旦客户订单出现,它就可以完成。由于大多数用户不愿意花时间等待,在实际过程中,他们希望整个供应链根据他们的订单来运转。一个订单周期可能需要数周或数月,从供应商和分包装配,到制造产品,再经过最终装运的订单到达客户。公司提供快速交货到客户往往会迫使所有的竞争者在市场上保持充足的成品库存,以提供快速订单周期。因此,几乎每一个组织包括制造部门或订单的基础是对未来的需求预测。能够准确预测需求,给公司机会通过确定水准测量与生产数量、理顺交通运输、规划高效率的物流运作来控制成本。一般的做法,准确的需求预测能导致有效率的运作和高水平的客户服务,同时不准确的预测,将不可避免地导致效率低下成本高的运作和低水准服务。在许多供应链中,我们提高物流过程效率和效能的关键是要提高对需求的预测水平。预测的一般方法所有公司都预测需求,但很难找到两家用一种需求预测方法的公司。在过去的几十年中,有很多不同的预测方法运用于若干不同的应用领域,包括工程和经济学。很多这样的方法已经应用到实际的问题中,对需求的预测在物流系统中,取得了不同程度的成功。大多数商业软件包支持需求预测,在物流系统中包括几十种不同的预测算法,分析师可以使用产生替代性需求的预测。虽然数十种不同的预测技术存在,但几乎任何一个预测的程序大致可分到下列四项基本分类:1、主观判断的办法。这种判断方法的本质是,假设有其它人知道,并能告诉你正确的答案。也就是通过以判断为基础的技术,我们收集了解需求的人的见解。举例来说,我们可能会进行一项调查,以客户基础,估计我们在下个月的销售收入。就其性质而言,是判断为基础的预测,用主观和定性数据,以预测未来的结果。他们本身就依靠专家的意见、经验、判断、直觉、猜想等“软”数据。这些技巧经常被用在没有历史数据情况下,由于引入了新的产品或服务,对预测的影响发生了根本变化,如新的技术、环境的改变、文化的变化、法律的变化等。一些比较常用的程序包括以下几个方面:(1)、调查。这是一种“自下而上”的办法,每一个人的贡献一部分,将成为最后的预测。举例来说,我们可能会以我们的客户基础为样本,来估计今后一个时期的需求。或者,我们可能会收集我们的销售队伍每个营业员今后一段时期预计的销售。这种做法至少在某种意义上说,我们从处在那个位置的人了解一些有关未来的需求。在另一方面,在实践中有已经被证明是存在严重的偏见的这些工具可能导致困难和昂贵的花销从顾客收集数据。历史还表明,调查“打算购买”通常会高估实际需求-喜欢一个产品是一回事,但实际上购买它往往是另一回事。销售人员也可能故意(甚至有意无意)夸大或低估自己的销售预测,他们相信他们的主管希望听到他们说的。如果销售人员(或客户群)认为,他们的预测将决定今后一个时期成品库存的水平,他们可能被诱惑提高预期需求和预算,以确保良好存货可用性。即使这些偏见是可以消除或控制的,另一个严重问题,将很可能维持不变。销售人也许能估计其每周销售量或总销售量,但是却不太可能在存货单元一级发展对物流系统可信的预测。基于这些原因,如果情况属实,会很难在这些工具的基础上形成一个对物流系统成功的需求预测程序。(2)、协商的方法。作为一种替代,以“自下而上”的统计调查、协商的方法,利用一小群个人预测来发展一般的预测。在“陪审团的执行意见”里,举例来说,某集团总裁在该公司将通过辩论和讨论一般预测的需求来满足和发展。在洞察和理解的基础上,每一个人的看法、市场、产品、竞争观念等等大概将有助于他们。再次,尽管这些高管,无疑是有经验的,但他们不是超然的观察员,并显而易见的有机会错误的投入。一个较正式的协商程序,是以所谓的“德尔菲法”帮助控制这些问题。在这种技术的一个小组,向超然的技术专家介绍同一份问卷以进行预测。答案经过采集、处理,并重新分发到小组,确保提供给所有成员,但需在一个匿名的基础上。每个专家对所收集的意见进行反映。第二次问卷调查再分发给各小组,反复这个过程,直至达成预测共识。达成共识的方法,通常只适宜高度总结并需经过相当长的时间。再次,他们的能力差别使在存货单元水平对物流系统的需求预测难度很大。判断为基础的方法是重要的,因为它们常常用来决定一个企业的战略。它们也可用于更为简单平凡的决策,如确定一个潜在的供应商所要求的质量的参考作用,而且还有许多其他的合理应用。以判断为基础的技术对基础需求预测系统是不够的,但是这不应当被理解为,判断在物流预测或销售人员中并没有发挥作用。事实上,在很多情况下,销售和营销人的宝贵资料、促销活动、新产品、竞争对手的活动等等应或多或少纳入预测。许多组织把这些数据作为补充资料,是用来修改现有的预测,而不是作为基准数据来建立预测。2、实验方法。需求预测的另一种做法是,当一个项目是“新”的时,没有其他资料为根据进行预测,只能对一小群客户进行实验,并根据推断结果推广。例如,公司经常会为考察一个新的消费产品,在地理上孤立出“试验市场”,以确定其可能的市场份额。这一经验,然后推广到全国市场计划,进行新产品的推出。实验的做法是十分有益和必要的,但对有需求纪录的现有产品,似乎直观的需求预测应该或多或少在需求的经验基础上。对于大多数企业(一些十分显着的例外),大部分的产品,在产品线上有长期的需求的历史。在新产品开发的早期阶段,得到一些人估计的产品的潜在需求水平是非常重要的。不同的市场研究技术用于这一目的。在顾客意见调查中,有时进行电话调查或在商场等地方进行街头问卷调查。对潜在的客户进行新产品展示或描述,并问他们是否有兴趣购买该项目。这种做法虽然可以帮助区分不同产品间吸引力的不同,但经验表明,以“采购意向”为衡量标准,很难转化为有意义的需求预测。这属于短期的是一个真正的“需求”实验。消费问题小组还用在早期阶段的产品开发工作。一小群潜在的客户聚集在一个房间里,他们可以使用该产品,并讨论它们。小组成员往往是为他们的参与付出了面值。像调查中,这些过程都有益于分析产品属性以估算需求,但们不构成真正的“需求实验”,因为没有购买的发生。测试市场往往是在新产品开发后使用,但事先必须在全国大规模推出新的品牌或产品。我们的构想是选择一个相对较小,合理孤立的“典型”的市场领域。在美国,这往往是一个中型城市如辛辛那提或水牛。总的营销计划,包括广告、促销及分销策略,是“滚出来”并落实在测试市场,以及度量取得的产品知名度,市场渗透和市场占有率均。这些数据被用来估计更大的国内市场潜在销售,重点通常是“微调”整体市场营销计划,并确保没有任何潜在问题被忽略。举例来说,Proctor和Gamble广泛推销它的Pringles土豆片生产与脂肪替代品olestra,以保证该产品将被市场广泛接受。3、关联/因果法。在一个原因后的假设,简单地说,别人买我们的产品是有原因的。如果我们能够理解这个原因(或一套理由),我们可以利用它来制定一项需求预测。举例来说,如果我们卖雨伞,在行人的立场上,我们可能会看到每天的需求是与天气密切相关的-我们在下雨时销售更多的雨伞。一旦我们建立了这种关系,一个良好的气象预报将有助于我们准备足够的雨伞,以应付预期的需求。4、“时间序列”的方法。时间序列的方法,和第一、三种我们已讨论的方法从根本上不同。一个纯粹的时间序列技术,没有任何判断或意见。我们不找在某种程度上“驱动”需求的“原因”或关系的因素,我们不检验项目或实验与客户的联系。就其性质而言,时间序列的程序,适用于需求数据是纵向而非横截面。这就是说,需求数据所代表的经验,是一再重复的,而不是采取一刀切的物品或地点。本质的做法,是承认(或假设)需求发生的时间在重复的模式。如果我们能够描述这些一般模式或倾向,而不考虑其“原因”,我们可以在此基础上形成的一个预测。在某种意义上说,所有的预测程序涉及对历史的经验的分析,并预测未来,我们的前景有点类似于过去。这四种办法的不同,是“寻找”的模式不同。主观判断的办法,依赖于主观的,特设分析外部的个人。实验工具推断结果,从少量的顾客推广到大批人群。因果方法寻找需求原因。时间序列技术浅析需求数据本身,以确定时序模式出现,并持续下去。英语原文2:TheABCsofSupplyChainManagement
ByChristopherKochWhatissupplychainmanagement?Supplychainmanagementisthecombinationofartandsciencethatgoesintoimprovingthewayyourcompanyfindstherawcomponentsitneedstomakeaproductorservice,manufacturesthatproductorserviceanddeliversittocustomers.Thefollowingarefivebasiccomponentsforsupplychainmanagement.1.Plan-Thisisthestrategicportionofsupplychainmanagement.Youneedastrategyformanagingalltheresourcesthatgotowardmeetingcustomerdemandforyourproductorservice.Abigpieceofplanningisdevelopingasetofmetricstomonitorthesupplychainsothatitisefficient,costslessanddelivershighqualityandvaluetocustomers.2.Source-Choosethesuppliersthatwilldeliverthegoodsandservicesyouneedtocreateyourproductorservice.Developasetofpricing,deliveryandpaymentprocesseswithsuppliersandcreatemetricsformonitoringandimprovingtherelationships.Andputtogetherprocessesformanagingtheinventoryofgoodsandservicesyoureceivefromsuppliers,includingreceivingshipments,verifyingthem,transferringthemtoyourmanufacturingfacilitiesandauthorizingsupplierpayments.Make-Thisisthemanufacturingstep.Scheduletheactivitiesnecessaryforproduction,testing,packagingandpreparationfordelivery.Asthemostmetric-intensiveportionofthesupplychain,measurequalitylevels,productionoutputandworkerproductivity.Deliver-Thisisthepartthatmanyinsidersrefertoas"logistics."Coordinatethereceiptofordersfromcustomers,developanetworkofwarehouses,pickcarrierstogetproductstocustomersandsetupaninvoicingsystemtoreceivepayments.Return-Theproblempartofthesupplychain.Createanetworkforreceivingdefectiveandexcessproductsbackfromcustomersandsupportingcustomerswhohaveproblemswithdeliveredproducts.Whatdoessupplychainmanagementsoftwaredo?Supplychainmanagementsoftwareispossiblythemostfracturedgroupofsoftwareapplicationsontheplanet.Eachofthefivemajorsupplychainstepspreviouslyoutlinedcomposesdozensofspecifictasks,manyofwhichhavetheirownspecificsoftware.Therearesomelargevendorsthathaveattemptedtoassemblemanyofthesedifferentchunksofsoftwaretogetherunderasingleroof,butnoonehasacompletepackage.Integratingthedifferentsoftwarepiecestogethercanbeanightmare.Perhapsthebestwaytothinkaboutsupplychainsoftwareistoseparateitintosoftwarethathelpsyouplanthesupplychainandsoftwarethathelpsyouexecutethesupplychainstepsthemselves.Supplychainplanning(SCP)softwareusesfancymathalgorithmstohelpyouimprovetheflowandefficiencyofthesupplychainandreduceinventory.SCPisentirelydependentuponinformationforitsaccuracy.Ifyou'reamanufacturerofconsumerpackagedgoodsforexample,don'texpectyourplanningapplicationstobeveryaccurateifyoucan'tfeedthemaccurate,up-to-dateinformationaboutcustomerordersfromyourretailcustomers,salesdatafromyourretailercustomers'stores,manufacturingcapacityanddeliverycapability.Thereareplanningapplicationsavailableforallfiveofthemajorsupplychainstepspreviouslylisted.Arguablythemostvaluable(andcomplexandpronetoerror)isdemandplanning,whichdetermineshowmuchproductyouwillmaketosatisfyyourdifferentcustomers'demands.Supplychainexecution(SCE)softwareisintendedtoautomatethedifferentstepsofthesupplychain.Thiscouldbeassimpleaselectronicallyroutingordersfromyourmanufacturingplantstoyoursuppliersforthestuffyouneedtomakeyourproducts.DoIneedtohaveERPsoftwarebeforeIinstallsupplychainsoftware?Thisisaverycontroversialsubject.YoumayneedERPifyouplantoinstallSCPapplicationsbecausetheyarereliantuponthekindofinformationthatisstoredinthemostquantityinsideERPsoftware.TheoreticallyyoucouldassembletheinformationyouneedtofeedtheSCPapplicationsfromlegacysystems(formostcompaniesthismeansExcelspreadsheetsspreadoutallovertheplace),butitcanbenightmarishtotrytogetthatinformationflowingonafast,reliablebasisfromalltheareasofthecompany.ERPisthebatteringramthatintegratesallthatinformationtogetherinasingleapplication,andSCPapplicationsbenefitfromhavingasinglemajorsourcetogotoforup-to-dateinformation.MostCIOswhohavetriedtoinstallSCPapplicationssaytheyaregladtheydidERPfirst.TheycalltheERPprojects"puttingyourinformationhouseinorder."Ofcourse,ERPisexpensiveanddifficult,soyoumaywanttoexplorewaystofeedyourSCPapplicationstheinformationtheyneedwithoutdoingERPfirst.SCEapplicationsarelessdependentupongatheringinformationfromaroundthecompany,sotheytendtobeindependentoftheERPdecision.Butchancesare,you'llneedtohavetheSCEapplicationscommunicatewithERPinsomefashion.It'simportanttopayattentiontoSCEsoftware'sabilitytointegratewiththeInternetandwithERPorSCPapplicationsbecausetheInternetwilldrivedemandforintegratedinformation.Forexample,ifyouwanttobuildaprivatewebsiteforcommunicatingwithyourcustomersandsuppliers,youwillwanttopullinformationfromSCE,SCPandERPapplicationstogethertopresentupdatedinformationaboutorders,payments,manufacturingstatusanddelivery.Whatisthegoalofinstallingsupplychainmanagementsoftware?BeforetheInternetcamealong,theaspirationsofsupplychainsoftwaredevoteeswerelimitedtoimprovingtheirabilitytopredictdemandfromcustomersandmaketheirownsupplychainsrunmoresmoothly.Butthecheap,ubiquitousnatureoftheInternet,alongwithitssimple,universallyacceptedcommunicationstandardshavethrownthingswideopen.Now,theoreticallyanyway,youcanconnectyoursupplychainwiththesupplychainsofyoursuppliersandcustomerstogetherinasinglevastnetworkthatoptimizescostsandopportunitiesforeveryoneinvolved.ThiswasthereasonfortheB2Bexplosion;theideathateveryoneyoudobusinesswithcouldbeconnectedtogetherintoonebighappy,cooperativefamily.Ofcourse,therealitybehindthisvisionisthatitwilltakeyearstocometofruition.ButconsideringthatB2Bhasonlybeenaroundforafewyears,someindustrieshavealreadymadegreatprogress,mostnotablyconsumer-packagedgoods(thecompaniesthatmakeproductsthatgotosupermarketsanddrugstores),hightechnologyandautos.Whenyouaskthepeopleonthefrontlinesintheseindustrieswhattheyhopetogainfromtheirsupplychaineffortsinthenearterm,theywillallrespondwithasingleword:visibility.Thesupplychaininmostindustriesislikeabigcardgame.Theplayersdon'twanttoshowtheircardsbecausetheydon'ttrustanyoneelsewiththeinformation.Butiftheyshowedtheirhandstheycouldallbenefit.Supplierswouldn'thavetoguesshowmuchrawmaterialstoorder,andmanufacturerswouldn'thavetoordermorethantheyneedfromsupplierstomakesuretheyhaveenoughonhandifdemandfortheirproductsunexpectedlygoesup.Andretailerswouldhavefeweremptyshelvesiftheysharedtheinformationtheyhadaboutsalesofamanufacturer'sproductinalltheirstoreswiththemanufacturer.TheInternetmakesshowingyourhandtootherspossible,butcenturiesofdistrustandlackofcoordinationwithinindustriesmakeitdifficult.Whatissupplychaincollaboration?Let'slookatconsumerpackagedgoodsasanexampleofcollaboration.Iftherearetwocompaniesthathavemadesupplychainahouseholdword,theyareWal-MartandProcter&Gamble.Beforethesetwocompaniesstartedcollaboratingbackinthe'80s,retailerssharedverylittleinformationwithmanufacturers.ButthenthetwogiantsbuiltasoftwaresystemthathookedP&GuptoWal-Mart'sdistributioncenters.WhenP&G'sproductsrunlowatthedistributioncenters,thesystemsendsanautomaticalerttoP&Gtoshipmoreproducts.Insomecases,thesystemgoesallthewaytotheindividualWal-Martstore.ItletsP&Gmonitortheshelvesthroughreal-timesatellitelink-upsthatsendmessagestothefactorywheneveraP&Gitemswoopspastascannerattheregister.Withthiskindofminute-to-minuteinformation,P&Gknowswhentomake,shipanddisplaymoreproductsattheWal-Martstores.NoneedtokeepproductspiledupinwarehousesawaitingWal-Mart'scall.Invoicingandpaymentshappenautomaticallytoo.ThesystemsavesP&Gsomuchintime,reducedinventoryandlowerorder-processingcoststhatitcanaffordtogiveWal-Mart"low,everydayprices"withoutputtingitselfoutofbusiness.CiscoSystems,whichmakesequipmenttohookuptotheInternet,isalsofamousforitssupplychaincollaboration.Ciscohasanetworkofcomponentsuppliers,distributorsandcontractmanufacturersthatarelinkedthroughCisco'sextranettoformavirtual,just-in-timesupplychain.WhenacustomerordersatypicalCiscoproduct-forexample,arouterthatdirectsInternettrafficoveracompanynetwork-throughCisco'swebsite,theordertriggersaflurryofmessagestocontractmanufacturersofprintedcircuitboardassemblies.Distributors,meanwhile,arealertedtosupplythegenericcomponentsoftherouter,suchasapowersupply.Cisco'scontractmanufacturers,someofwhommakesubassembliesliketherouterchassisandotherswhoassemblethefinishedproduct,alreadyknowwhat'scomingdowntheorderpipebecausethey'veloggedontoCisco'sextranetandlinkedintoCisco'sownmanufacturingexecutionsystems.SoonafterthecontractmanufacturersreachintoCisco'sextranet,theextranetstartspokingaroundthecontractor'sassemblylinetomakesureeverythingis
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 常用护理操作并发症预防与处理
- 护理法律法规速览
- 干性皮肤的急救护理方法
- 2025年办公室智能窗帘采购安装协议
- 城市海绵体建设
- 2025年智能眼镜产业园用户体验设计
- 2025年智能花盆土壤传感技术优化实践研究
- 2026 年中职康复技术(康复训练)试题及答案
- 餐饮的考试题及答案
- 基于ArcGIS的MLP县滑坡地质灾害易发性评价
- 2026年日历表含农历(2026年12个月日历-每月一张A4可打印)
- 建筑材料采购投标方案(技术标)
- 小步舞详解(教师版)
- 光伏支架安装技术交底
- 节能基本情况表(打印)
- 创新思维与创业实验-东南大学中国大学mooc课后章节答案期末考试题库2023年
- 电动车转让合同协议书电子版
- YS/T 1019-2015氯化铷
- GB/T 39081-2020电阻点焊及凸焊接头的十字拉伸试验方法
- GB/T 25390-2010风力发电机组球墨铸铁件
- GA 38-2021银行安全防范要求
评论
0/150
提交评论