函数单调性奇偶性经典例题答案_第1页
函数单调性奇偶性经典例题答案_第2页
函数单调性奇偶性经典例题答案_第3页
函数单调性奇偶性经典例题答案_第4页
函数单调性奇偶性经典例题答案_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

...wd......wd......wd...函数的性质的运用1.假设函数是奇函数,则以下坐标表示的点一定在函数图象上的是〔〕A.B.C.D.2.函数是奇函数,则的值为〔〕A.B.C.D.3.f〔x〕是偶函数,g〔x〕是奇函数,假设,则f〔x〕的解析式为_______.4.函数f〔x〕为偶函数,且其图象与x轴有四个交点,则方程f〔x〕=0的所有实根之和为________.5.定义在R上的单调函数f(x)满足f(3)=log3且对任意x,y∈R都有f(x+y)=f(x)+f(y).(1)求证f(x)为奇函数;(2)假设f(k·3)+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.6.定义在区间〔0,+∞〕上的函数f(x)满足f(=f(x1)-f(x2),且当x>1时,f(x)<0.〔1〕求f(1)的值;〔2〕判断f(x〕的单调性;〔3〕假设f(3)=-1,解不等式f(|x|)<-2.7.函数f(x)对任意的a、b∈R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.〔1〕求证:f(x)是R上的增函数;〔2〕假设f(4)=5,解不等式f(3m2-m-2)<3.8.设f〔x〕的定义域为〔0,+∞〕,且在〔0,+∞〕是递增的,〔1〕求证:f〔1〕=0,f〔xy〕=f〔x〕+f〔y〕;〔2〕设f〔2〕=1,解不等式。9.设函数对都满足,且方程恰有6个不同的实数根,则这6个实根的和为〔〕0B.9C.12D.1810.关于的方程的两个实根、满足,则实数m的取值范围11.函数满足,且∈[-1,1]时,,则与的图象交点的个数是()A.3B.4C.5 D.6 12.函数满足:,则=;当时=,则=13.函数f(x)在(-1,1)上有定义,f()=-1,当且仅当0<x<1时f(x)<0,且对任意x、y∈(-1,1)都有f(x)+f(y)=f(),试证明:(1)f(x)为奇函数;(2)f(x)在(-1,1)上单调递减.14.函数f(x)=的图象()A.关于x轴对称 B.关于y轴对称C.关于原点对称 D.关于直线x=1对称15.函数f(x)在R上为增函数,则y=f(|x+1|)的一个单调递减区间是_________.16.假设函数f(x)=ax3+bx2+cx+d满足f(0)=f(x1)=f(x2)=0(0<x1<x2),且在[x2,+∞上单调递增,则b的取值范围是_________.17.函数f(x)=ax+(a>1).(1)证明:函数f(x)在(-1,+∞)上为增函数.(2)用反证法证明方程f(x)=0没有负数根.18.求证函数f(x)=在区间(1,+∞)上是减函数.19设函数f(x)的定义域关于原点对称且满足:(i)f(x1-x2)=;(ii)存在正常数a使f(a)=1.求证:(1)f(x)是奇函数.(2)f(x)是周期函数,且有一个周期是4a20.函数f(x)的定义域为R,且对m、n∈R,恒有f(m+n)=f(m)+f(n)-1,且f(-)=0,当x>-时,f(x)>0.(1)求证:f(x)是单调递增函数;(2)试举出具有这种性质的一个函数,并加以验证.21.奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,设不等式解集为A,B=A∪{x|1≤x≤},求函数g(x)=-3x2+3x-4(x∈B)的最大值.22.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于()A.0.5 B.-0.5 C.1.5 D.-1.523.定义域为(-1,1)的奇函数y=f(x)又是减函数,且f(a-3)+f(9-a2)<0,则a的取值范围是()A.(2,3) B.(3,)C.(2,4) D.(-2,3)24.假设f(x)为奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则xf(x)<0的解集为_________.25.如果函数f(x)在R上为奇函数,在(-1,0)上是增函数,且f(x+2)=-f(x),试比拟f(),f(),f(1)的大小关系_________.参考答案6.〔1〕f(1)=f(1/1)=f(1)-f(1)=0。〔2〕当0<x<y时,y/x>1,所以f(y)-f(x)=f(y/x)<0。故f单调减。〔3〕f(3)=-1,f(3)=f(9/3)=f(9)-f(3),f(9)=-2而f〔|x|)<-2=f(9),且f单调减,所以|x|>9x>9或x<-97.〔1〕设x1,x2∈R,且x1<x2,则x2-x1>0,∴f(x2-x1)>1.f(x2)-f(x1)=f((x2-x1)+x1)-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1>0.∴f〔x2〕>f(x1).即f(x)是R上的增函数.〔2〕∵f〔4〕=f〔2+2〕=f〔2〕+f〔2〕-1=5,∴f〔2〕=3,∴原不等式可化为f(3m2-m-2)<f(2),∵f(x)是R上的增函数,∴3m2-m-2<2,解得-1<m<,故解集为.13.证明:(1)由f(x)+f(y)=f(),令x=y=0,得f(0)=0,令y=-x,得f(x)+f(-x)=f()=f(0)=0∴f(x)=-f(-x).∴f(x)为奇函数.(2)先证f(x)在(0,1)上单调递减.令0<x1<x2<1,则f(x2)-f(x1)=f(x2)-f(-x1)=f()∵0<x1<x2<1,∴x2-x1>0,1-x1x2>0,∴>0,又(x2-x1)-(1-x2x1)=(x2-1)(x1+1)<0∴x2-x1<1-x2x1,∴0<<1,由题意知f()<0,即f(x2)<f(x1).∴f(x)在(0,1)上为减函数,又f(x)为奇函数且f(0)=0.∴f(x)在(-1,1)上为减函数.14.解析:f(-x)=-f(x),f(x)是奇函数,图象关于原点对称.答案:C15.解析:令t=|x+1|,则t在(-∞,-1上递减,又y=f(x)在R上单调递增,∴y=f(|x+1|)在(-∞,-1上递减.答案:(-∞,-116.解析:∵f(0)=f(x1)=f(x2)=0,∴f(0)=d=0.f(x)=ax(x-x1)(x-x2)=ax3-a(x1+x2)x2+ax1x2x,∴b=-a(x1+x2),又f(x)在[x2,+∞单调递增,故a>0.又知0<x1<x,得x1+x2>0,∴b=-a(x1+x2)<0.答案:(-∞,0〕17.证明:(1〕设-1<x1<x2<+∞,则x2-x1>0,>1且>0,∴>0,又x1+1>0,x2+1>0∴>0,于是f(x2)-f(x1)=+>0∴f(x)在(-1,+∞〕上为递增函数.(2〕证法一:设存在x0<0(x0≠-1)满足f(x0)=0,则且由0<<1得0<-<1,即<x0<2与x0<0矛盾,故f(x)=0没有负数根.证法二:设存在x0<0(x0≠-1)使f(x0)=0,假设-1<x0<0,则<-2,<1,∴f(x0)<-1与f(x0)=0矛盾,假设x0<-1,则>0,>0,∴f(x0)>0与f(x0)=0矛盾,故方程f(x)=0没有负数根.18.证明:∵x≠0,∴f(x)=,设1<x1<x2<+∞,则.∴f(x1)>f(x2),故函数f(x)在(1,+∞〕上是减函数.19.证明:(1〕不妨令x=x1-x2,则f(-x)=f(x2-x1)==-f(x1-x2)=-f(x).∴f(x)是奇函数.(2〕要证f(x+4a)=f(x),可先计算f(x+a),f(x+2∵f(x+a)=f[x-(-a)]=.∴f(x+4a)=f[(x+2a)+2a]==f(x),故f(x)是以20.证明:设x1<x2,则x2-x1->-,由题意f(x2-x1-)>0,∵f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1=f(x2-x1)+f(-)-1=f[(x2-x1)-]>0,∴f(x)是单调递增函数.(2)解:f(x)=2x+1.验证过程略.21.解:由且x≠0,故0<x<,又∵f(x)是奇函数,∴f(x-3)<-f(x2-3)=f(3-x2),又f(x)在(-3,3)上是减函数,∴x-3>3-x2,即x2+x-6>0,解得x>2或x<-3,综上得2<x<,即A={x|2<x<},∴B=A∪{x|1≤x≤}={x|1≤x<},又g(x)=-3x2+3x-4=-3(x-)2-知:g(x)在B上为减函数,∴g(x)max=g(1)=-4.22.解析:f(7.5)=f(5.5+2)=-f(5.5)=-f(3.5+2)=f(3.5)=f(1.5+2)=-f(1.5)=-f(-0.5+2)=f(-0.5)=-f(0.5)=-0.5.答案:B23.解析:∵f(x)是定义在(-1,1〕上的奇函数又是减函数,且f(a-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论