版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年安徽省合肥市高职录取数学自考预测试题库(含答案)学校:________班级:________姓名:________考号:________
一、单选题(50题)1.从2,3,5,7四个数中任取一个数,取到奇数的概率为()
A.1/4B.1/2C.1/3D.3/4
2.不等式x²-3x-4≤0的解集是()
A.[-4,1]B.[-1,4]C.(-∞,-l]U[4,+∞)D.(-∞,-4]U[1,+∞)
3.己知tanα=2,则(2sinα-cosα)/(sinα+3cosα)=()
A.3/5B.5/3C.1/4D.2
4.下列说法中,正确的个数是()①如果两条平行直线中的一条和一个平面相交,那么另一条直线也和这个平面相交;②一条直线和另一条直线平行,它就和经过另一条直线的任何平面都平行;③经过两条异面直线中的一条直线,有一个平面与另一条直线平行;④两条相交直线,其中一条直线与一个平面平行,则另一条直线一定与这个平面平行.
A.0B.1C.2D.3
5.某山上山有4条路线,下山有3条路线,则某人上山到下山不同路线为()
A.12种B.7种C.4种D.3种
6.不等式(x²-4x−5)(x²+8)<0的解集是()
A.{x|-1<x<5}
B.{x|x<-1或x>5}
C.{x|0<x<5}
D.{x|−1<x<0}
7.已知过点A(a,2),和B(2,5)的直线与直线x+y+4=0垂直,则a的值为()
A.−2B.−2C.1D.2
8.已知在x轴截距为2,y截距为-3的直线方程为()
A.3x-2y+6=0B.3x-2y-6=0C.x-2y-3=0D.x-2y+5=0
9.若等差数列前两项为-3,3,则数列的公差是多少().
A.-3B.3C.0D.6
10.已知定义在R上的函数F(x)=f(x)-4是奇函数,且满足f(-3)=1,则f(0)+f(3)=()
A.4B.6C.9D.11
11.从甲地到乙地有3条路线,从乙地到丙地有4条路线,则从甲地经乙地到丙地的不同路线共有()
A.3种B.4种C.7种D.12种
12.函数y=2x-1的反函数为g(x),则g(-3)=()
A.-1B.9C.1D.-9
13.设a=lg2,b=lg3,c=lg5,则lg30=()
A.abcB.a+b+cC.a-b-cD.无法确定
14.已知点M(1,2)为抛物线y²=4x上的点,则点M到该抛物线焦点的距离为()
A.10B.8C.3D.2
15.过点(-2,1)且平行于直线2x-y+1=0的直线方程为()
A.2x+y-1=0B.2x-y+5=0C.x-2y-3=0D.x-2y+5=0
16.定义在R上的函数f(x)是奇函数,且f(x+2)=f(x),则f(-1)+f(4)+f(7)=()
A.-1B.0C.1D.4
17.-240°是()
A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角
18.从标有1,2,3,4,5的5张卡片中任取2张,那么这2张卡片数字之积为偶数的概率为()
A.7/20B.3/5C.7/10D.4/5
19."x<0"是“ln(x+1)<0”的()
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
20.如果椭圆的一个焦点坐标是为(3,0),一个长轴顶点为(−5,0),则该椭圆的离心率为()
A.3/5B.-3/5C.1D.2
21.在等差数列{an}中,a2+a9=16,则该数列前10项的和S10的值为()
A.66B.78C.80D.86
22.从1、2、3、4、5五个数中任取一个数,取到的数字是3或5的概率为()
A.1/5B.2/5C.3/5D.4/5
23.圆(x-2)²+y²=4的圆心到直线x+ay-4=0距离为1,且a>0,则a=()
A.3B.2C.√2D.√3
24.在等比数列{an}中,已知a₃,a₅是方程x²-12x+9=0的两个根,则a₄=()
A.12B.9C.±2√3D.±3
25.不等式|x-5|≤3的整数解的个数有()个。
A.5B.6C.7D.8
26.已知圆锥曲线母线长为5,底面周长为6π,则圆锥的体积是().
A.6πB.8πC.10πD.12π
27.向量a=(1,0)和向量b=(1,√3)的夹角为()
A.0B.Π/6C.Π/2D.Π/3
28.若函数f(x)=3x²+bx-1(b∈R)是偶函数,则f(-1)=()
A.4B.-4C.2D.-2
29.直线斜率为1的直线为().
A.x+y−1=0B.x−y−1=0C.2x−y−4=0D.x−2y+1=0
30.等差数列{an}的前5项和为5,a2=0则数列的公差为()
A.1B.2C.3D.4
31.样本5,4,6,7,3的平均数和标准差为()
A.5和2B.5和√2C.6和3D.6和√3
32.过点P(1,-1)且与直线3x+y-4=0平行的直线方程为()
A.3x+y-2=0B.x-3y-4=0C.3x-y-4=0D.x+3y+2=0
33.两个正方体的体积之比是1:8,则这两个正方体的表面积之比是()
A.1:2B.1:4C.1:6D.1:8
34.已知方程x²+px+15=0与x²-5x+q=0的解集分别是M与N,且M∩N={3},则p+q的值是()
A.14B.11C.2D.-2
35.倾斜角为135°,且在x轴上截距为3的直线方程是()
A.x+y+3=0B.x+y-3=0C.x-y+3=0D.x-y-3=0
36.函数y=sin²2x-cos²2x的最小正周期是()
A.Π/2B.ΠC.(3/2)ΠD.2Π
37.已知一组样本数据是:7,5,11,9,8,则平均数和样本方差分别是()
A.6和8B.6和4C.8和4D.8和2
38.在△ABC中,“cosA=cosB”是“A=B”的()
A.充分条件B.必要条件C.充要条件D.既不是充分也不是必要条件
39.扔两个质地均匀的骰子,则朝上的点数之和为5的概率是()
A.1/6B.1/9C.1/12D.1/18
40.X>3是X>4的()
A.充分条件B.必要条件C.充要条件D.即不充分也不必要条件
41.圆x²+y²-4x+4y+6=0截直线x-y-5=0所得弦长等于()
A.√6B.1C.5D.5√2/2
42.如果a₁,a₂,…,a₈为各项都大于零的等差数列,公差d≠0,则().
A.a₁a₈>a₄a₅B.a₁a₈<a₄a₅C.a₁+a₈<a₄+a₅D.a₁a₈=a₄a₅
43.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则有().
A.a>b>cB.b>c>aC.c>a>bD.c>b>a
44.“|x-1|<2成立”是“x(x-3)<0成立”的(
)
A.充分而不必要条件B.充分而不必要条件C.充分必要条件D.既不充分也不必要条件
45.有2名男生和2名女生,李老师随机地按每两人一桌为他们排座位,一男一女排在一起的概率为()
A.2/3B.1/2C.1/3D.1/4
46.已知A(1,1),B(-1,0),C(3,-1)三点,则向量AB*向量AC=()
A.-6B.-2C.2D.3
47.现有3000棵树,其中400棵松树,现在抽取150树做样本其中抽取松树的棵数为()
A.15B.20C.25D.30
48.下列函数在区间(0,+∞)上为减函数的是()
A.y=3x-1B.f(x)=log₂xC.g(x)=(1/2)^xD.A(x)=sinx
49.已知圆的方程为x²+y²-4x+2y-4=0,则圆的半径为()
A.±3B.3C.√3D.9
50.将一个容量为40的样本分成若干组,在它的频率分布直方图中,若其中一组的相应的小长方形的面积是0.4,则该组的频数等于()
A.4B.6C.10D.16
二、填空题(20题)51.已知cos(Π-a)=1/2,则cos2a=_________。
52.将一个容量为m的样本分成3组,已知第一组的频数为8,第2、3组的频率为0.15和0.45,则m=________。
53.向量a=(一2,1),b=(k,k+1),若a//b,则k=________。
54.甲乙两人比赛飞镖,两人所得平均环数相同,其中甲所得环数的方差为15,乙所得的环数如下:0,1,5,9,10,那么成绩较为稳定的是________。
55.已知点A(1,2)和点B(3,-4),则以线段AB的中点为圆心,且与直线x+y=5相切的圆的标准方程是________。
56.圆x²+2x+y²-4y-1=0的圆心到直线2x-y+1=0的距离是________。
57.在关系式y=2x²+x+1中,可把_________看成_________的函数,其中_________是自变量,_________是因变量。
58..已知数据x₁,x₂,……x₂₀的平均数为18,则数据x₁+2,,x₂+2,x₂₀+2的平均数是______。
59.若函数f(x)=x²+(b-3)x+2是偶函数,则b=________,增区间为________。
60.若向量a=(1,-1),b=(2,-1),则|3a-b|=________。
61.过点(2,0)且与圆(x-1)²+(y+1)²=2相切的直线方程为________。
62.已知直线kx-y-1=0与直线x+2y=0互相平行,则k=_____。
63.直线y=ax+1的倾斜角是Π/3,则a=________。
64.已知扇形的圆心角为120,半径为15cm,则扇形的弧长为________cm。
65.若(lg50+lg2)(√2)^x=4,则x=________。
66.已知向量a=(1/2,cosα),b=(-√3/2,sinα),且a⊥b,则sinα=______。
67.函数y=(cos2x-sin2x)²的最小正周期T=________。
68.甲有100,50,5元三张纸币,乙有20,10元两张纸币,两人各取一张自己的纸币,比较纸币大小,则甲的纸币比乙的纸币小的概率=_________。
69.已知数列{an}的前n项和Sn=n(n+1),则a₁₀=__________。
70.sin(-60°)=_________。
三、计算题(10题)71.已知在等差数列{an}中,a1=2,a8=30,求该数列的通项公式和前5项的和S5;
72.已知tanα=2,求(sinα+cosα)/(2sinα-cosα)的值。
73.数列{an}为等差数列,a₁+a₂+a₃=6,a₅+a₆=25,(1)求{an}的通项公式;(2)若bn=a₂n,求{bn}前n项和Sn;
74.解下列不等式x²>7x-6
75.求函数y=cos²x+sinxcosx-1/2的最大值。
76.在△ABC中,角A,B,C所对应的边分别是a,b,c,已知b=2√2,c=√5,cosB=√5/5。(1)求a的值;(2)求△ABC的面积
77.已知集合A={X|x²-ax+15=0},B={X|x²-5x+b=0},如果A∩B={3},求a,b及A∪B
78.已知sinα=1/3,则cos2α=________。
79.计算:(4/9)^½+(√3+√2)⁰+125^(-⅓)
80.已知三个数成等差数列,它们的和为9,若第三个数加上4后,新的三个数成等比数列,求原来的三个数。
参考答案
1.D
2.B
3.A
4.C
5.A
6.A[解析]讲解:一元二次不等式的考察,由于括号内x²+8始终是大于0的,所以整体的正负是由前一个括号控制的,所以等价于x²-4x−5<0,解得1<x<5
7.B
8.B
9.D[解析]讲解:考察等差数列的性质,公差为后一项与前一项只差,所以公差为d=3-(-3)=6
10.D
11.D
12.A
13.Blg30=lg(2*3*5)=lg2+lg3+lg5=a+b+c,故选B.考点:对数的运算.
14.D
15.B
16.B
17.B
18.C
19.B[解析]讲解:由ln(x+1)<0解得-1<x<0;然而x<0不能推出-1<x
20.A
21.B
22.B
23.D
24.D
25.C[解析]讲解:绝对值不等式的化简,-3≤x-5≤3,解得2≤x≤8,整数解有7个
26.D立体图形的考核,底面为一个圆,周长知道了,求得半径为3,高可以用勾股定理求出为4,得出体积12π
27.D
28.C
29.B[解析]讲解:考察直线斜率,将直线方程化成的一般形式y=kx+b,则x的系数k就是直线的斜率,只有By=x+1,答案选B。
30.AS5=(a1+a5)/2=5,a1+a5=2,即2a3=2,a3=1,公差d=a3-a2=1-0=1.考点:等差数列求公差.
31.B
32.A解析:考斜率相等
33.B[解析]讲解:由于立方体的体积为棱长的立方,当体积比为1:8的时候,棱长比就应该为1:2,表面积又是六倍棱长的平方,所以表面积之比为1:4。
34.B
35.B[答案]B[解析]讲解:考察直线方程的知识,斜率为倾斜角的正切值k=tan135°=-1,x轴截距为3则过定点(3,0),所以直线方程为y=-(x-3)即x+y-3=0,选B
36.A
37.C
38.C[解析]讲解:由于三角形内角范围是(0,π)余弦值和角度一一对应,所以cosA=cosB与A=B是可以互相推导的,是充要条件,选C
39.B
40.B
41.A由圆x²+y²-4x+4y+6=0,易得圆心为(2,-2),半径为√2.圆心(2,-2)到直线x-y-5=0的距离为√2/2.利用几何性质,则弦长为2√(√2)²-(√2/2)²=√6。考点:和圆有关的弦长问题.感悟提高:计算直线被圆截得弦长常用几何法,利用圆心到直线的距离,弦长的一半,及半径构成直角三角形计算,即公式d²+(AB/2)²=r²,d是圆到直线的距离,r是圆半径,AB是弦长.
42.B[解析]讲解:等差数列,a₁a₈=a₁²+7da₁,a₄a₅=a₁²+7da₁+12d²,所以a₁a₈<a₄a₅
43.D[答案]D[解析]讲解:重新排列10,12,14,14,15,15,16,17,17,17,算得,a=14.7.b=15,c=17答案选D
44.B[解析]讲解:解不等式,由|x-1|<2得xϵ(-1,3),由x(x-3)<0得xϵ(0,3),后者能推出前者,前者推不出后者,所以是必要不充分条件。
45.A
46.BAB=(-1,0)-(1,1)=(-2,-1),AC=(3,-1)-(1,1)=(2,-2),AB*AC=(-2)*2+(-1)´*(-2)=-2考点:平面向量数量积.
47.B
48.C[解析]讲解:考察基本函数的性质,选项A,B为增函数,D为周期函数,C指数函数当底数大于0小于1时,为减函数。
49.B圆x²+y²-4x+2y-4=0,即(x-2)²+(y+1)²=9,故此圆的半径为3考点:圆的一般方程
50.D
51.-1/2
52.20
53.-2/3
54.甲
55.(x-2)²+(y+1)²=8
56.8
57.可把y看成x的函数,其中x是自变量,y是因变量.
58.20
59.3,[0,+∞]
60.√5
61.x+y-2=0
62.-1/2
63.√3
64.10Π
65.2
66.√3/2
67.Π/2
68.1/3
69.20
70.-√3/2
71.解:an=a1+(n-1)d所以a8=a1+7d所以30=2+7d所以d=42所以an=a1+(n-1)d=2+(n-1)4=4n-2又因为Sn=na1+1/2n(n-1)d所以S5=5a1+1/2×5×4d=5×2+10×4=50
72.解:(sinα+cosα)/(2sinα-cosα)=(sinα/cosα+cosα/cosα)/(2sinα/cosα-cosα/cosα)=(tanα+1)/(2tanα-1)=(2+1)/(2*2-1)=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年东源县卫生健康局公开招聘高层次和急需紧缺人才备考题库完整答案详解
- 2026年建筑行业社保缴纳合同
- 2025年北京协和医院肿瘤内科合同制科研助理招聘备考题库完整参考答案详解
- 2026年航空自由合同
- 天津2025年民生银行天津分行社会招聘备考题库有答案详解
- 交通运输部路网监测与应急处置中心2026年度公开招聘备考题库及答案详解1套
- 中国信息通信研究院2026届校园招聘80人备考题库有答案详解
- 江西省交通投资集团有限责任公司2025年校园招聘笔试笔试历年参考题库及答案
- 2024年水利部黄河水利委员会事业单位招聘高校毕业生考试真题
- 2025年中国农业银行研发中心社会招聘7人备考题库及答案详解一套
- 新教科版四上科学2.2《呼吸与健康生活》优质课件
- 数字化智慧病理科建设白皮书
- plc课程设计电镀自动生产线控制大学论文
- 高压作业实操科目三安全隐患图片题库(考试用)
- 绿盾加密软件技术白皮书
- 铝合金门窗计算书
- GMP质量管理体系文件 事故调查报告
- GB/T 7600-2014运行中变压器油和汽轮机油水分含量测定法(库仑法)
- 比较文学概论马工程课件 第5章
- 跨境人民币业务介绍-杨吉聪
- 工程项目质量管理培训课件
评论
0/150
提交评论