基于经验模态分解的激光散斑噪声抑制方法_第1页
基于经验模态分解的激光散斑噪声抑制方法_第2页
基于经验模态分解的激光散斑噪声抑制方法_第3页
基于经验模态分解的激光散斑噪声抑制方法_第4页
基于经验模态分解的激光散斑噪声抑制方法_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

时间:TIME\@"yyyy'年'M'月'd'日'"2022年3月29日学海无涯页码:第1-页共1页基于经验模态分解的激光散斑噪声抑制方法定量相位成像(QPI)[1-2]是一种新兴的无标记光学成像方法,可以实现反射样品三维形貌的可视化,测量透明和半透明样品的内部结构和折射率分布,其在透明生物样品上的应用是当前生物光学成像的研究热点之一。定量相位成像技术主要依赖全息[3]和干涉技术记录透明物体的相位信息,或是记录光场通过透明物体的衍射强度图,从记录的强度图中提取物体的相位。它可以与压缩感知[4]、深度学习[5-7]、自动对焦[8]、拓扑调制[9]或补偿技术[10]相结合,实现更高精度的测量结果。当用激光照射待测样品时,物体表面相对于激光波长量级而言相当粗糙,由于激光的高相干性,各个物点的散射光之间可能发生干涉,从而产生呈颗粒状无规则分布的散斑噪声。其存在会显著降低成像结果的分辨率、减少图像的信噪比,无法满足高精度相位重建的要求,因此有必要对激光散斑噪声进行抑制。

目前,常用的散斑噪声抑制的方法主要分成两类[11],一类是添加或替换硬件降低光源的相干性,如使用LED等低相干性的光源[12]等。Farrokhi[13]等人采用一动一静双散射片系统来获得高速散斑场照明,以抑制定量相位成像中的相干散斑。李煊[14]等人提出一种基于旋转双散射片的全息散斑噪声抑制方法,其光学信号的非相关周期大,为获得大量非相关全息图求均值去噪提供了依据。总体来说,这类硬件方法对光程差进行精确控制的要求更高,增加了搭建光路的复杂度和难度。另外一类则是通过图像处理手段实现散斑噪声抑制。Uzan等人[15]对位于图像块中心的有噪声像素采用非局部均值(NLM)滤波,对散斑噪声起到了较好的抑制效果。但该方法在去噪的同时平滑了部分边缘处的信息,会导致相位出现误差。刘吉等人[16]提出一种基于正余弦分解结合自适应全变分的去噪方法,该方法提高了图像的峰值信噪比,减少了去噪后相位图的波动性。但该方法中自适应参数的选取是图像去噪和保留边缘信息的关键,需要通过缩小自适应参数的取值范围来达到最优去噪的重建效果。Montresor等人[17]应用残差网络(DNCNN)对数字全息干涉测量的相位图进行去噪,具有非高斯统计和非平稳特性,并表现出空间相关长度和出色的去噪性能。但该方法需要使用大量的含散斑噪声的全息图数据集对多等级神经网络进行训练,实验条件复杂。牛瑞等人[18]提出利用二维高斯窗口对包裹相位进行散斑噪声抑制,不仅保留了包裹相位的跳变边缘,还提高了相位重建的精度。但该方法中二维高斯窗口大小以及阈值会影响相位重建精度,需要研究最佳窗口大小及阈值。吴育民等人[19]提出一种基于Canny算子改进各向异性扩散(P-M)方程的全息散斑抑制方法,在去噪的同时有利于保留图像的细节信息。但该方法的再现图像仍然存在轻微的二次干涉条纹,且图像相较于原始图像而言存在一定的模糊。这类图像处理手段虽然在定量相位成像中达到了一定的散斑抑制效果,但对于相位重建精度还有待提高。

针对以上问题,本文提出了一种结合经验模态分解(EMD)的Canny算子改进P-M方程的定量相位成像散斑噪声抑制方法。首先对所记录的全息图进行EMD得到一系列频率由高到低的固有模态函数(IMF)分量,仅用高频的IMF分量重构图像以增强图像细节信息。随后引入Canny算子对细节信息突出的重构图像进行边缘检测,从而更好地控制扩散去噪过程,提高了P-M方程抑制散斑噪声的性能,并通过实验验证了该散斑噪声抑制方法的可行性。

2基本原理

2.1结合EMD的Canny算子改进P-M方程法在全息散斑噪声抑制中的应用

在全息图中的散斑噪声是一种乘性噪声[20-21],其数学模型如式(1)所示:

H(x,y)=H(x,y)N(x,y)

,(1)

其中:H(x,y)为电荷耦合器件(CCD)所记录的图像,其包含着散斑噪声;H(x,y)为不含噪声的理想全息图;N(x,y)为散斑噪声。

结合EMD的Canny算子改进P-M方程法首先将图像H(x,y)经EMD处理,得到一系列频率从高到低的IMF分量。通过这些不同频率的IMF进行选取并重构图像,从而得到效果不同的图像。比如需要对图像进行图像退化从而降低噪声的影响,则只需要选取低频的IMF分量进行重构新的图像;需要突出图像细节从而增强图像,则只需要选取高频的IMF分量进行重构图像。本文所提出的方法通过选取EMD分解出来的高频IMF分量重构出细节更加突出的图像,随后用Canny算子对重构图像进行边缘检测,从而引导P-M方程实现更好的扩散去噪性能。该散斑噪声抑制方法的主要处理过程如下:

(1)对图像H(x,y)进行EMD分解,式(1)可以改写为:

H(x,y)=(∑i=1nCi+r)N(x,y)

.(2)

由于全息图的细节信息主要包含在高频分量C1中,因此只使用高频分量C1来重构新的全息图以突出细节信息,式(2)可以改写为:

H(x,y)=C1N(x,y)

.(3)

(2)对重构的图像H(x,y)进行Canny边缘检测,得到边缘检测的结果C(x,y),并记录上阈值k1。

(3)根据边缘检测结果引导各向异性扩散方程的扩散程度,进行去噪,得到散斑抑制后的全息图H(x,y)。

(4)随后对散斑抑制后的全息图H(x,y)进行数值重建,从再现像中提取出相位信息进行定量相位成像。由于此时的相位信息包裹在(-π,π)之中,需要使用相应的算法进行相位展开以获得真实的相位信息。最后根据相位误差的来源,采用相对应的相位补偿算法对误差进行补偿。

2.2EMD

二维经验模态分解的目的是将一个二维信号f(x,y)分解成一系列频率从高到低的IMF分量,高频部分包含物体细节信息,低频部分包含物体轮廓信息,具体过程如下:

(1)找出f(x,y)的极大值和极小值,通过插值法构造出极大值曲面u(x,y)和极小值曲面v(x,y),极大值曲面和极小值曲面的均值为:

e1(x,y)=u(x,y)+v(x,y)2

.(4)

均值e1(x,y)与f(x,y)的差记为h1(x,y),有:

h1(x,y)=f(x,y)−e1(x,y)

.(5)

(2)将h1(x,y)作为新的输入重复上述过程k次,直到满足式(6)时方可停止循环。其中,SD的值一般在0.1~0.5之间,α一般为0.2。

SD=∑x=1X∑y=1Y∣∣h1(k−1)(x,y)−h1k(x,y)∣∣2h1k2(x,y)≤α

.(6)

值得注意的是,SD的表达式实际上是两次相邻迭代计算结果之间的标准差计算公式,主要反映了两次迭代计算之间的偏差程度。当SD≤α时,说明两次相邻迭代计算结果h1(k−1)(x,y)与h1k(x,y)之间相差很小,达到了可接受的计算精度,如果再继续循环迭代,对于计算精度的提高作用不明显。此时计算得到的h1k(x,y)是一个IMF分量(C1),包含着图像f(x,y)的最高频信息。

(3)令r1(x,y)表示图像f(x,y)去除最高频信息C1之后剩余的部分,则有:

r1(x,y)=f(x,y)−C1

.(7)

(4)令r1(x,y)作为新的待分析图像,并重复步骤(1)和步骤(2)的计算过程之后,得到第2个IMF分量C2。

(5)重复上述过程n次,当rn(x,y)和Cn小于预定误差或者rn(x,y)为单调函数时,则不能再从图像f(x,y)中提取出IMF分量。此时,图像f(x,y)如式(8)表示:

f(x,y)=∑i=1nCi+r

.(8)

2.3Canny算子改进P-M方程法

基于偏微分方程的图像去噪方法得到了广泛的应用,从线性均匀扩散最终发展到各向异性扩散。在各向异性扩散中,应用最为广泛的是Perona和Malik共同提出的Perona-Malik(P-M)方程[22],许多方法都是基于P-M方程发展起来的[23-24]。

然而传统的P-M方程法存在以下问题[25]:

(1)由于梯度算子∇无法去除大的孤立噪声点,在大的噪声点处的梯度值会很大,同时扩散系数c与梯度值成反比,这会导致此处的扩散系数c的值变小,达不到扩散去噪的效果。

(2)梯度算子∇对噪声的敏感度高,抗噪性能不强,不能识别伪边缘。

为了克服上述问题,通过引入Canny边缘检测算子改进P-M方程从而克服梯度算子∇抗噪能力不强的问题[19]。其数学模型如式(9)所示:

∂I(x,y,t)∂t=div[(1−K)⋅c(|∇I(x,y,t)|)⋅∇I(x,y,t)]

,(9)

其中:t为时间,I(x,y,0)为初始状态,∇为梯度算子,div为散度算子,K为Canny算子。值得注意的是,当该像素点是图像边缘时,K趋近于1,这会使得P-M方程的扩散速度减慢,有利于保留图像细节信息;否则,当K趋近于0时,会使得P-M方程的扩散速度加快,从而更好地去除噪声。c为扩散系数,用于控制P-M方程的扩散程度,常用的计算公式有两种,分别如式(10)和式(11)所示:

c(x)=exp(−xk2)

,(10)

c(x)=11+(xk)2

,(11)

在式(10)和式(11)中,k为控制扩散过程的一个系数。

使用Canny算子K改进P-M方程法的优势在于:一是Canny算子K相比于梯度算子∇对噪声的敏感度更低,抗噪能力更好。二是Canny边缘检测中的双阈值筛选一般涵盖图像70%的非边缘像素点,令扩散系数c中的参数k等于上阈值k1,显然这是一个合理的选择。该方法具体过程如下所示:

(1)对图像g(x,y)进行Canny边缘检测,得到边缘检测的结果C(x,y),以及记录上阈值k1。

(2)按上、下、左、右4个方向求解图像g(x,y)4个方向上的梯度,即∇N、∇S、∇E和∇W。

(3)令扩散系数c中的参数k等于上阈值k1,同时结合4个方向的梯度求解得到cN、cS、cE和cW。

(4)由于Canny边缘检测结果C(x,y)中只有0和1两种值,当C(x,y)=1时,令Canny算子K=0.01;当C(x,y)=0时,令Canny算子K=0.99。

(5)散度算子div可以按照式(12)计算:

div=14(cN×

∇N

+cS×

∇S

+cE×

∇E

+cW×

∇W)

.(12)

(6)图像g(x,y)经过Canny算子改进P-M方程法处理后,可以表示为:

g(x,y)=g(x,y)+(1−K)div

.(13)

3实验

3.1实验装置及样本

本文搭建了一套基于Mach-Zehnder干涉方法的数字记录光路,如图1所示。将一个波长为632.8nm的He-Ne激光器作为光源,其发出的光首先经过由一块焦距为15mm的平凹透镜和一块焦距为250mm的平凸透镜组成的扩束准直器,随后被分束镜BS1分成两束等光强的光。一束经过样品之后被反射镜M1反射到分束镜BS2,称之为物光;另外一束光则直接被反射镜M2反射到BS2上,称之为参考光。最后,物光和参考光在BS2处合成一束光,在CCD(BFLY-U3-23S6M-C,相机分辨率为1920×1200,像素大小为5.86μm)的记录面上干涉形成全息图,并由CCD记录下来。

图1基于Mach-Zehnder干涉仪的数字记录光路原理图及实物图。(a)原理图;(b)实物图。

Fig.1SchematicdiagramandphysicaldiagramofdigitalrecordingopticalpathbasedonMach-Zehnderinterferometer.(a)Schematicdiagram;(b)Physicaldiagram.

下载:原图|高精图|低精图

在如图2(a)所示的相位型样品板中,其以玻璃材料为基底,表面图案具有一定的厚度,当光透射样品板时,图案的厚度会引起干涉条纹发生形变。我们选取图2(b)~(f)所示的5种不同的样本置于光路之后,得到5张对应的全息图,分别如图2(g)~(k)所示。

图2样品及全息图。(a)样品板;(b)样品A;(c)样品B;(d)样品C;(e)样品D;(f)样品E;(g)样品A对应的全息图A;(h)样品B对应的全息图B;(i)样品C对应的全息图C;(j)样品D对应的全息图D;(k)样品E对应的全息图E。

Fig.2Samplesandholograms.(a)Sampleplate;(b)SampleA;(c)SampleB;(d)SampleC;(e)SampleD;(f)SampleE;(g)HologramAcorrespondingtosampleA;(h)HologramBcorrespondingtosampleB;(i)HologramCcorrespondingtosampleC;(j)HologramDcorrespondingtosampleD;(k)HologramEcorrespondingtosampleE.

下载:原图|高精图|低精图

3.2结合EMD的Canny算子改进P-M方程法的相位重建

首先,将全息图进行EMD,得到一系列从高频到低频的IMF分量,通过选取不同的IMF分量可以重构出不同效果的图像,图3为任意选取全息图B分解出的不同IMF分量进行重构的图像。根据结果可知,C1重构出来的图像可以观察到明显的条纹,且条纹存在明显的形变;C3重构出来的图像为图案的轮廓信息,能够大致识别图案;C5只能重构出非常粗略的部分轮廓信息;C7重构出的图像非常模糊,已无法分辨出图像的形状。因此,我们选取全息图的最高频IMF分量,即C1进行图像重构。

图3选取不同IMF分量的重构结果。(a)选取C1的重构图像;(b)选取C3的重构图像;(c)选取C5的重构图像;(d)选取C7的重构图像。

Fig.3ReconstructionresultswithdifferentIMFcomponentsselected.(a)ReconstructedimagewithC1;(b)ReconstructedimagewithC3;(c)ReconstructedimagewithC5;(d)ReconstructedimagewithC7.

下载:原图|高精图|低精图

其次,用Canny算子对全息图进行边缘检测。图4所示为对图3(a)和图2(h)进行边缘检测的结果。通过对比可知,前者的边缘检测结果更好。

图4Canny算子边缘检测结果。(a)Canny算子对图3(a)的边缘检测结果;(b)Canny算子对图2(h)的边缘检测结果。

Fig.4Cannyoperatoredgedetectionresults.(a)EdgedetectionresultsofCannyoperatorforFig.3(a);(b)EdgedetectionresultsofCannyoperatorforFig.2(h).

下载:原图|高精图|低精图

我们用Canny算子改进P-M方程法对5张由最高频IMF分量重构的图像进行去噪,结果如图5所示。

图5经过所提出方法处理后的全息图。(a)全息图A;(b)全息图B;(c)全息图C;(d)全息图D;(e)全息图E。

Fig.5Hologramsprocessedbytheproposedmethod.(a)HologramA;(b)HologramB;(c)HologramC;(d)HologramD;(e)HologramE.

下载:原图|高精图|低精图

最后,对处理后的全息图采用角谱衍射法[26]进行数值重建,从再现像中恢复出包裹相位信息。采用基于离散余弦的最小二乘法[27]对包裹相位进行展开,以此获得真实相位。针对所搭建的基于Mach-Zehnder干涉仪的数字记录光路,其相位误差的主要来源是物光与参考光之间引入的倾斜误差。采用最小二乘拟合法[28]进行相位补偿,最终得到的相位图如图6(a)~(e)所示。为了验证本文所提出方法处理后恢复相位的准确性,对未进行任何去噪处理的原始全息图进行相位成像,结果如图6(f)~(j)所示。样品A经本文所提方法处理后的重建相位图像和未经任何处理的重建相位图像分别为图6(a)和图6(f),前者相位分布更加规则,后者存在明显的相位形变;样品B经本文所提方法处理后的重建相位图像和未经任何处理的重建相位图像分别为图6(b)和图6(g),前者凸起部分在4个角上分布均匀,后者凸起部分杂乱分布;样品C经本文所提方法处理后的重建相位图像和未经任何处理的重建相位图像分别为图6(c)和图6(h),前者呈规则的球型分布,后者圆球变形且在三维显示中其顶部有不规则的凸起,由于高度变化较小,所以二维显示对于不规则凸起不是很明显,但能看出其存在明显形变;样品D经本文所提方法处理后的重建相位图像和未经任何处理的重建相位图像分别为图6(d)和图6(i),两者较为接近,但可以看出前者中心部分的相位细节更加突出;样品E经本文所提方法处理后的重建相位图像和未经任何处理的重建相位图像分别为图6(e)和图6(j),前者凸起的条形分布更加规则,后者条形呈锯齿形状。因此,根据成像结果可知,经本文所提方法处理后恢复的相位分布轮廓更加光滑,其在定量相位成像中具有一定的优势。

图6经过所提出方法处理后的重建相位图和未去噪全息图的重建相位图对比。(a)全息图A经过所提出方法处理后重建的相位图;(b)全息图B经过所提出方法处理后重建的相位图;(c)全息图C经过所提出方法处理后重建的相位图;(d)全息图D经过所提出方法处理后重建的相位图;(e)全息图E经过所提出方法处理后重建的相位图;(f)未去噪全息图A的重建相位图;(g)未去噪全息图B的重建相位图;(h)未去噪全息图C的重建相位图;(i)未去噪全息图D的重建相位图;(j)未去噪全息图E的重建相位图。

Fig.6Comparisonofthereconstructedphasemapsafterprocessingbytheproposedmethodandthereconstructedphasemapswithoutdenoisingholograms.(a)ReconstructedphasemapofhologramAafterprocessingbytheproposedmethod;(b)ReconstructedphasemapofhologramBafterprocessingbytheproposedmethod;(c)ReconstructedphasemapofthehologramCafterprocessingbytheproposedmethod;(d)ReconstructedphasemapofhologramDafterprocessingbytheproposedmethod;(e)ReconstructedphasemapofthehologramEafterprocessingbytheproposedmethod;(f)ReconstructedphasemapofhologramAwithoutdenoising;(g)ReconstructedphasemapofhologramBwithoutdenoising;(h)ReconstructedphasemapofhologramCwithoutdenoising;(i)ReconstructedphasemapofhologramDwithoutdenoising;(j)ReconstructedphasemapofhologramEwithoutdenoising.

下载:原图|高精图|低精图

3.3实验对比

为了验证所提出方法的有效性,将所提出的方法与基于Canny算子改进P-M方程法、均值滤波法以及中值滤波法进行比较。所记录的5种全息图经过基于Canny算子改进P-M方程法、均值滤波法和中值滤波法处理后,经过角谱衍射法数值重建[26]、基于离散余弦变换的最小二乘法相位展开[27]以及最小二乘拟合法[28]相位补偿之后得到的相位图如图7所示。相对于未去噪声的相位图,其相位分布均匀且轮廓光滑,在成像质量方面得到了较大的提升。通过将其与图6(a)~(e)相比可知,基于Canny算子改进P-M方程法处理后重建的相位图像与本文所提出方法处理后重建的相位图像更为相似,但后者相位轮廓分布更加规则且细节形状突出。均值滤波和中值滤波在一些样品中存在丢失细节等问题,不利于高精度的恢复物体的相位。例如,在图7(k)中,椭圆形凸起部分存在明显的左低右高;图7(g)和图7(l)中凸起小图案的左下角存在明显缺失;图7(i)虽然整体上光滑,但其中间部分已经基本看不出具体轮廓;图7(j)和图7(o)的凸起条形存在明显的锯齿形状。

图7全息图A、B、C、D、E经过基于Canny算子改进P-M方程法、均值滤波法与中值滤波法处理后重建的相位图。(a)~(e)经过基于Canny算子改进P-M方程法处理后重建的相位图;(f)~(j)经过均值滤波法处理后重建的相位图;(k)~(o)经过中值滤波法处理后重建的相位图。

Fig.7ReconstructedphasemapsofhologramA,B,C,DandEafterprocessingbytheimprovedP-MequationmethodbasedontheCannyoperator,meanfiltermethodandmedianfiltermethod.(a)~(e)ReconstructedphasemapsafterprocessingbytheimprovedP-MequationmethodbasedonCannyoperator;(f)~(j)Reconstructedphasemapsafterprocessingbythemeanfilteringmethod;(k)~(o)Reconstructedphasemapsafterprocessingbythemedianfiltermethod.

下载:原图|高精图|低精图

4分析与讨论

4.1降噪定量分析

为了对降噪后的重建相位图做定量分析,本文采用结构相似性(SSIM)[29]、边缘保持指数(EPI)[30]和散斑抑制指数(SSI)[31]作为定量分析的指标。

SSIM的计算公式如式(14)所示:

SSIM=l(x,y)⋅c(x,y)⋅s(x,y)

,(14)

其中:l(x,y)表示图像的亮度,c(x,y)表示图像的对比度,s(x,y)表示图像的结构。SSIM的值越大,说明图像失真的程度越小。当两张图像相同时,SSIM的值等于1。其中,参考图像是通过多幅全息图叠加平均法获得。

EPI的计算公式如式(15)所示:

EPI=∑i=1m∑j=1n|GR11−GR21|after∑i=1m∑j=1n|GR12−GR22|before

,(15)

其中:GR11和GR21表示图像抑制后两个相邻的像素点,GR12和GR22表示图像抑制前两个相邻的像素点。边缘保持指数的最大值为1,最小值为0。边缘保持指数越高,则说明经过处理之后对原图像的细节信息保持得越好。

SSI的计算公式如式(16)所示:

SSI=var(Iafter)−−−−−−−−√mean(Iafter)⋅mean(Ibefore)var(Ibefore)−−−−−−−−√

,(16)

其中:Iafter表示经过散斑抑制后的图像;Ibefore表示散斑抑制前的图像,即含噪的图像;var(I)−−−−−√表示图像I(x,y)的标准差;mean(I)表示图像I(x,y)的均值。通常,SSI小于1,散斑被抑制。SSI越小,则说明散斑抑制能力越强。

5种全息图经过所提出方法、基于Canny算子改进P-M方程法、均值滤波法以及中值滤波法处理之后重建相位图对应的SSIM、EPI和SSI计算结果如表1所示。

表1不同散斑抑制方法的SSIM、EPI、SSI计算结果

Tab.1CalculationresultsofSSIM,EPIandSSIfordifferentspecklesuppressionmethods

样品方法SSIMEPISSI

样品A本文所提方法0.96810.86390.7438

基于Canny算子改进P-M方程法0.92090.83650.7861

均值滤波法0.89880.82010.8087

中值滤波法0.91280.83230.8001

样品B本文所提方法0.90130.94790.7537

基于Canny算子改进P-M方程法0.87840.92510.7758

均值滤波法0.81330.80660.8577

中值滤波法0.85080.83930.7810

样品C本文所提方法0.96370.95060.6354

基于Canny算子改进P-M方程法0.95110.94230.6583

均值滤波法0.91410.91940.6920

中值滤波法0.94810.93690.6915

样品D本文所提方法0.91260.84680.9222

基于Canny算子改进P-M方程法0.89330.83300.9308

均值滤波法0.77550.69940.9869

中值滤波法0.80310.77410.9637

样品E本文所提方法0.94360.87310.8584

基于Canny算子改进P-M方程法0.88650.86860.8877

均值滤波法0.76800.70070.9109

中值滤波法0.87780.80600.8912

下载:导出CSV

从表1的定量分析计算结果可以得出,本文所提出方法对应的SSIM、EPI的计算结果最大,SSI的计算结果最小。在5种样品之中,以均值滤波对应的SSIM为计算基准,中值滤波法相对于均值滤波法的SSIM最大提高了14.2969%,最小提高了1.5576%,平均提高了5.5488%;基于Canny算子改进P-M方程法相对于均值滤波法的SSIM最大提高了15.4297%,最小提高了2.4588%,平均提高了9.0262%;本文所提出方法相对于均值滤波法的SSIM最大提高了22.8646%,最小提高了5.4261%,平均提高了12.9000%。

以均值滤波对应的EPI为计算基准,中值滤波法相对于均值滤波法的EPI最大提高了15.0278%,最小提高了1.4876%,平均提高了6.6307%;基于Canny算子改进P-M方程法相对于均值滤波法的EPI最大提高了23.9618%,最小提高了1.9997%,平均提高了12.4491%;本文所提出方法相对于均值滤波法的EPI最大提高了24.6064%,最小提高了3.3925%,平均提高了14.3861%。

以均值滤波的SSI为计算基准,中值滤波法相对于均值滤波法的SSI最大降低了8.9425%,最小降低了0.0723%,平均降低了2.9183%;基于Canny算子改进P-M方程法相对于均值滤波法的SSI最大降低了9.5488%,最小降低了2.5469%,平均降低了5.0893%;本文所提出方法相对于均值滤波法的SSI最大降低了12.1255%,最小降低了5.7635%,平均降低了8.1299%。

4.2相位截面曲线分析

为了验证降噪后定量相位重建的精确性,在如图6(a)、图7(a)、图7(f)和图7(k)所示相位图的y=711处(图6(a)中红色虚线处)做截面曲线对比分析,同时与原始相位图比较,结果如图8所示;在如图6(b)、图7(b)、图7(g)和图7(l)所示相位图的x=415处(图6(b)中红色虚线处)做截面曲线对比分析,同时与原始相位图比较,结果如图9所示;在如图6(c)、图7(c)、图7(h)和图7(m)所示相位图的x=589处(图6(c)中红色虚线处)做截面曲线对比分析,同时与原始相位图比较,结果如图10所示;在如图6(d)、图7(d)、图7(i)和图7(n)所示相位图的y=959处(图6(d)中红色虚线处)做截面曲线对比分析,同时与原始相位图比较,结果如图11所示;在如图6(e)、图7(e)、图7(j)和图7(o)所示相位图的x=1355处(图6(e)中红色虚线处)做截面曲线对比分析,同时与原始相位图比较,结果如图12所示。其中,原始相位图的获取采用了多幅全息图叠加平均法,通过记录6幅同一场景下的全息图,对6张再现像叠加取平均后就获得相对真实的相位分布。该相位分布轮廓较为光滑,用其来评价不同散斑抑制方法性能的高低。

图8图6(a)、图7(a)、图7(f)和图7(k)所示相位图与原始相位图在y=711处的截面曲线对比。

Fig.8PhasemapsshowninFig.6(a),Fig.7(a),Fig.7(f)andFig.7(k)comparedwiththecross-sectionalcurvesoftheoriginalphasemapaty=711.

下载:原图|高精图|低精图

图9图6(b)、图7(b)、图7(g)和图7(l)所示相位图与原始相位图在x=415处的截面曲线对比。

Fig.9PhasemapsshowninFig.6(b),Fig.7(b),Fig.7(g)andFig.7(l)arecomparedwiththecross-sectionalcurvesoftheoriginalphasemapatx=415.

下载:原图|高精图|低精图

图10图6(c)、图7(c)、图7(h)和图7(m)所示相位图与原始相位图在x=589处的截面曲线对比。

Fig.10PhasemapsshowninFig.6(c),Fig.7(c),Fig.7(h)andFig.7(m)comparedwiththecross-sectionalcurvesoftheoriginalphasemapatx=589.

下载:原图|高精图|低精图

图11图6(d)、图7(d)、图7(i)和图7(n)所示相位图与原始相位图在y=959处的截面曲线对比。

Fig.11PhasemapsshowninFig.6(d),Fig.7(d),Fig.7(i)andFig.7(n)comparedwiththecross-sectionalcurvesoftheoriginalphasemapaty=959.

下载:原图|高精图|低精图

图12图6(e)、图7(e)、图7(j)和图7(o)所示相位图与原始相位图在x=1355处的截面曲线对比。

Fig.12PhasemapsshowninFig.6(e),Fig.7(e),Fig.7(j)andFig.7(o)comparedwiththecross-sectionalcurvesoftheoriginalphasemapatx=1355.

下载:原图|高精图|低精图

从相位截面曲线变化来看,绿色虚线、蓝色点、橙色

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论